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Summary: Despite its importance in fisheries studies, there is insufficient understanding on the effect of sampling error or 
bias on individual growth and other stock indicators. We show the influence of sample length distributions on parameter 
estimates, illustrating with an example. For the brown swimming crab, we simulated length samples in five configurations 
and estimated parameters of von Bertalanffy (k, , t0), asymptotic weight ( ), weight-length relationship (a, b), growth 
performance (f’) and condition factor (Kn). Parameter estimates were compared with baseline values using relative bias, 
standard error and root mean square error. The results show that the accuracy and bias of parameter estimates depend on 
the lengths sampled. For example, the bias and accuracy of  and  vary inversely with sampled length, whereas com-
bining length segments yields smaller biases of k and t0 than those of  and . In general, the accuracy of parameter 
estimates does not always depend on sampling the entire length range, and errors are not the same for all parameters. These 
results are useful to guide sampling when resources are scarce. We discuss potential reasons for incomplete length sample 
structure and offer recommendations to obtain best estimates for parameters of interest.

Keywords: parameter bias and accuracy; von Bertalanffy; growth performance; condition factor.

Efectos de muestras de tallas erróneas sobre los valores estimados del crecimiento individual y la condición de los 
stocks

Resumen: A pesar de su importancia en los estudios de pesquerías, aún no se comprende lo suficiente el efecto del error 
o del sesgo del muestreo en los parámetros de crecimiento individual y otros indicadores poblacionales. Utilizando un
ejemplo, aquí se muestra la influencia de las distribuciones muestrales de longitud en las estimaciones de parámetros 
poblacionales. Para la jaiba café, simulamos muestreo de longitud en cinco configuraciones y estimamos parámetros de 
von Bertalanffy (k, , t0), peso asintótico ( ), relación peso-longitud (a, b), eficiencia de crecimiento (f’), y factor de 
condición (Kn). Las estimaciones de los parámetros se compararon con valores de referencia utilizando el sesgo relativo, 
el error estándar y el error cuadrático medio. Los resultados muestran cómo la precisión y el sesgo de las estimaciones de 
parámetros dependen de las longitudes muestreadas. Por ejemplo, el sesgo y la precisión de  y , varían inversamente 
con la longitud muestreada, mientras que la combinación de segmentos de longitud produce sesgos de k y t0 más pequeños 
que los de  y . En general, la precisión de las estimaciones de los parámetros no siempre depende del muestreo de 
todo el rango de tallas disponible, y los errores no son los mismos para todos los parámetros. Estos resultados son útiles 
para guiar el muestreo cuando los recursos son escasos. Discutimos las posibles razones de la estructura de la muestra de 
longitud incompleta y ofrecemos recomendaciones para obtener las mejores estimaciones para los parámetros de interés.

Palabras clave: sesgo y precisión de los parámetros; von Bertalanffy; desempeño del crecimiento; factor de condición.
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scenarios, we compute the accuracy of vB individ-
ual growth parameters and how they subsequently 
affect the weight-length relationship,  (maximum 
theoretical weight), f’ and Kn. Our aim is to show 
the sensitivity of these parameters to the length sam-
pling configuration and derive conclusions to inform 
sampling methods.

MATERIALS AND METHODS

We simulate growth data for the brown swimming 
crab, Callinectes bellicosus and compare estimated 
parameter values with those reported in the literature. 
In the simulations, individual growth follows a vB 
model with multiplicative random impacts i. We use 
the general model , where Li is observed 
length, L(ti) is median length-at age ti and i is the 
random term. Known, baseline parameter values are  

190.44 mm carapace width (CW), 
and t0= -0.14 y (Villa-Diharce et al. 2021).

The vB model with a multiplicative error is 
  where  is the length-

at-age  with log-mean = 0 and arbitrary log-sd = 0.10. 
An additive model results from logarithmic transfor-
mation of the model, , where , 

. The 
loglikelihood is 

 (Burnham and 
Anderson 2002). The maximum likelihood estimators 
are the parameter values such that they maximize the 
loglikelihood, that is, 

.
We used a stratified sampling scheme to generate 

random samples. Three length (mm) segments were 
considered: (26-80), (80-135) and (135-190); these 
cover the length range of the brown swimming crab. 
Different sampling schemes could have been used, yet 
our aim was to obtain simulated samples of different, 
non-overlapping size segments to contrast results of 
our parameter estimates. Thus, the most parsimonious 
scheme in this case is stratified sampling. With these 
three segments we considered five sampling configu-
rations (see below). We obtained pairs of Li and their 
corresponding  i to obtain L(ti)=Li/ i. that satisfy the 
restriction L0< L(ti)< L∞; that is, L(ti) values smaller 
than 26 and greater than 190 mm were discarded. The 
age ti that corresponds to length Li was obtained by 
solving the vB model:

Fifty pairs of Li and i were randomly drawn for 
each length segment to estimate vB growth and stock 
condition parameter values; this was repeated 1000 
times using the Monte Carlo (MC) method (Janssen 
2013). The means of the following parameters values 
were estimated: 1) vB growth equation, k,  and t0; 2) 
growth performance index, f’; 3) weight-length rela-
tionship, a, b; 4) maximum theoretical weight, W ; 
and 5) condition factor, Kn=W0/ . Reference parame-
ters a and b (and their variability) were also estimated 
in a previous work (Villa-Diharce et al. 2021).

INTRODUCTION

The importance of obtaining accurate estimates 
of individual growth parameters is reflected in a large 
amount of scientific literature related to fisheries, aqua-
culture and ecology (Brunel and Dickey-Collas 2010, 
Hutchinson and TenBrink 2011, Lee et al. 2020). Of-
ten, owing to the selectivity of fishing gear, samples do 
not represent the complete size structure in the popu-
lation (Goodyear 1995, 2019, Kraak et al. 2019) even 
in data-rich scenarios (Frater and Stefansson 2020). 
This can be problematic given that individual growth 
influences estimates of mortality, fecundity, condition 
factor, growth performance, structure, dynamics and 
variability of stocks, food webs and ecological net-
works (Tsoukali et al. 2016, Stawitz and Essington 
2018, N´Dri et al. 2020). More directly for manage-
ment, growth parameters can also influence estimated 
abundance, yield and ecosystem-based management 
reference points (Parma and Deriso 1990, Jennings and 
Dulvy 2005, Cope and Punt 2009).

The von Bertalanffy (vB) individual growth model 
has been used for diverse species of fishes, mammals, 
birds, and invertebrates (Lee et al. 2020). This mod-
el is often expressed as Lt

(Pauly 1979).  is the asymptotic length, k is a con-
stant representing catabolic stress referred to as the 
Brody growth coefficient (Hart and Chute 2009), and 
t0 is a theoretical age when length is zero. Despite the 
wide applicability of the vB model, it is often diffi-
cult to compare growth between different taxa (Brey 
1999), and there have been several attempts to address 
this problem (e.g. the index of Gallucci and Quinn II 
1979). A commonly used length-based index of growth 
performance is f’  (Pauly and 
Munro 1984), which is a species-specific index used 
to compare reliability of vB parameters between and 
within species or stocks (Etim et al. 1999, Moura et al. 
2017). The growth performance parameter f’ has found 
widespread use in comparing integral performance of 
vB growth curves (Quaas and Skonhoft 2022, Rodrí-
guez-Castañeda et al. 2022, Şimşek et al. 2022).

In addition to growth parameters and growth per-
formance, the condition factor (Kn) is an important 
index in fisheries biology and allows inferences about 
the fitness of an individual in a population (N’Dri et 
al. 2020). Kn can be expressed as , where  is the 
weight estimated with the length-weight relationship 
and W0 is observed weight; this expression is known 
as the relative condition factor (Le Cren 1951). Kn can 
be used to compare the status of conspecific organisms 
or the status between species, sexes and sizes and in 
different seasons of the year or between years. Individ-
uals are considered to be in relatively good condition 
when Kn is greater than 1 and in poor condition if Kn 
is lower than 1 (Jisr et al. 2018).

In the present study we explore how simulat-
ed length structure in samples affects estimates of 
key stock condition parameters, with an illustrative 
example. We consider a sample of lengths to be bi-
ased if it consistently over- or underrepresents the 
entire stock size structure. Under various sampling 
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Samples from each length segment were drawn us-
ing the following five configurations (Table 1).

Except for Kn, all mean MC-estimated parameter 
values were compared with the original values in terms 
of their relative biases, mean squared error and stan-
dard errors. To analyse the values, in equation Kn=W0/

 we substitute for the observed weight W0 the expres-
sion used for its simulation. We have , where 
a and b are the observed values   of the parameters of the 
weight-length model. In this equation we assumed a 
multiplicative error term  with lognormal distribution. 
Substituting terms, we have Kn  

. For each length configuration, ran-
dom lengths of uniform distributions (within the small-
est and largest length) were generated. Weight was then 
obtained considering multiplicative or lognormal errors 
with log-mean=0 and cv= 10% (or sd=0.101). This ex-
pression shows the influence of discrepancies between 
a and  and between b and  on the value of Kn. To bet-
ter represent this influence, we tabulated magnitudes 
for the different sampling configurations. When a and b 
take their real values, then , , and .

For each sampling configuration, 50 Kn values were 
obtained as follows. With the MC-originated lengths, 
an observed mean weight W0 was computed using the 
observed parameters of the weight-length relationship 
(see below). For each mean length, weight was ob-
tained using the MC parameters a and b obtained for 
samples from the three length segments. Kn values 
were then plotted against their corresponding length to 
observe the behaviour of Kn depending on the sam-
pling scheme. To better understand the behaviour of 
Kn, we conducted a closer analysis of the differenc-
es of the true and MC-estimated a and b values of the 
weight-length relationship.

As mentioned, the vB parameter values used as 
baselines were those obtained by Villa-Diharce et al. 
(2021). Using maximum likelihood, we estimated pa-
rameters of the weight-length model  (Haddon 
2011) for combined sexes; after observing the disper-
sion of data we assumed a multiplicative error term 
(e.g. Curiel-Bernal et al. 2021). The statistical model 
is  with  lognormally distributed with log-
mean zero and log-standard deviation σ. We log-trans-
formed the model and obtained an additive model 

, where  , 

. The loglikelihood function is (Burnham 
and Anderson 2002)  

 .
The estimators ,  and  of parameters a, b and 

σ, respectively, are those that maximize the loglikeli-
hood function, that is . To 
numerically maximize the loglikelihood we used the 
function nlminb( ) written in R (R Core Team 2021). 
The significance of b in the weight-length equation was 
tested using a t-test (Pauly 1984).

Using known values of the vB parameters and of 
the weight-length model, we estimated the maximum 
loglikelihood values of  and ,  

 (Pauly and Munro 1984) and  
(Haddon 2011).

We compared the quality of a parameter estima-
tor H using the mean squared difference between the 
estimator H and the parameter , i.e. the mean square 
error (MSE) of parameter H. The MSE can be divid-
ed into variance and bias (Casella and Berger 1990): 

 . For a 
sequence H1, H2, ... Hn of estimates of a parameter , 
one can obtain the terms of the previous relationship 
as   .

We then took the square root of these quanti-
ties so that they are expressed in the same scale of 
the estimated parameter: square root of the mean er-
ror  , standard error 

  and Bias . To 
further appreciate the magnitudes, we took their value 
relative to the magnitude of the parameter to be esti-
mated  (Lehmann and Casella 1998, Dekking et al. 
2005, Wang et al. 2021). These relative values were 
then tabulated with columns referring to the segment 
sampled and rows showing the relative quantities esti-
mated, as a percentage of the original values.

Finally, with each set of vB parameter values es-
timated sampling the five configurations of lengths, 
a plot was generated and compared with the baseline 
curve using the best estimates (Villa-Diharce et al. 
2021). This provided an integrated insight into bias-
es and errors that can be committed with incomplete 
length sampling.

RESULTS

The weight-length relationship estimated was 
W=0.000017939 L3.349, b being significantly great-
er than 3 (p<0.001) (CI: 3.2923, 3.4059). Using the 
mentioned vB parameters, we estimated the maximum 
weight  The 
baseline value of phi prime was f’=  

 190.44 = 4.58.
The mean, relative bias (RB), relative standard er-

ror (RSE) and relative root mean square error (RMSE) 
of the parameters estimated under the tested sampling 
schemes are shown, respectively, in Tables 2 to 5. The 
following section highlights the most relevant informa-
tion contained in these five tables.

We obtained the minimum value of  when sam-
pling only from the smallest length segment (26-80 

Table 1. – Configurations of length segments and sample sizes. 
Length is given in mm of carapace length for Callinectes bellicosus.

Configuration Length
segments

26 – 80 80 - 135 135 – 190

No. Sample size

1 1, 2, 3 17 16 17

2 1, 3 25 0 25

3 1 50 0 0

4 2 0 50 0

5 3 0 0 50

https://doi.org/10.3989/scimar.05313.062
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Table 2. – Average parameter (f) values for samples of different segments and combinations of segments of length range of the brown 
swimming crab Callinectes bellicosus.

Baseline values

Segment sampled (mm)
26-190 (26-80)+(135-190) 26-80 80-135 135-190

 (mm) 190.44 187.11 189.98 128.49 159.27 184.00

K (y–1) 1.038 1.099 1.083 2.262 1.612 1.054

t0 (y) -0.14 -0.14 -0.13 -0.12 -0.22 -0.78

f’ 4.58 4.58 4.59 4.47 4.54 4.51

a 1.794E-5 1.81E-05 1.80E-05 1.81E-05 1.93E-05 2.36E-05

b 3.349 3.349 3.350 3.350 3.353 3.349

W  (g) 773.94 746.44 768.76 277.75 410.336 699.47

Table 3. – Relative bias (%) of parameter estimates (f) for samples of different segments and combinations of segments of length ranges of 
the brown swimming crab Callinectes bellicosus.

Baseline values

Segment sampled (mm)
26-190 (26-80)+(135-190) 26-80 80-135 135-190

 (mm) 190.44 -1.75 -0.24 -32.53 -16.37 -3.38

K (y–1) 1.038 5.89 4.32 117.92 55.28 1.55

t0 (y) -0.14 2.62 3.98 15.40 -53.81 -459.66

f’ 4.58 0.16 0.31 -2.28 -0.84 -1.42

a 1.794E-5 0.65 0.24 0.91 7.42 31.50

b 3.349 0.01 0.02 0.05 0.13 -0.011

W  (g) 773.94 -3.55 -0.67 -64.11 -46.98 9.62

Table 4. – Relative standard error (%) of parameters (f) for samples of different segments and combinations of segments of size range of the 
brown swimming crab Callinectes bellicosus.

Baseline values

Segment sampled (mm)
26-190 (26-80)+(135-190) 26-80 80-135 135-190

 (mm) 190.44 3.78 3.22 45.02 30.87 8.60

K (y-1) 1.038 9.07 8.63 75.59 62.04 42.25

t0 (y) -0.14 10.64 9.88 16.15 127.42 533.54

f’ 4.58 0.39 0.43 1.80 1.83 3.30

a 1.7939E-5 12.10 10.13 18.11 47.65 115.47

b 3.349 0.80 0.67 1.36 2.75 4.30

W  (g) 773.94 13.56 11.06 80.85 78.07 28.10

Table 5. – Relative mean square error (%) of parameters (f) for samples of different segments and combinations of segments of size range of 
the brown swimming crab Callinectes bellicosus.

Baseline values
Segment sampled (mm)

26-190 (26-80)+(135-190) 26-80 80-135 135-190

 (mm) 190.44 4.17 3.23 55.54 34.94 9.24

K (y–1) 1.038 10.81 9.66 140.07 83.10 42.27

t0 (y) -0.14 10.96 10.65 22.32 138.32 704.23

f’ 4.58 0.42 0.53 2.90 2.02 3.59

a 1.7939E-5 12.12 10.13 18.13 48.22 119.68

b 3.349 0.80 0.67 1.36 2.75 4.30

W  (g) 773.94 14.02 11.08 103.19 91.12 29.70
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mm) and the nearest to the baseline value using extreme 
lengths, 26-80 and 135-190 (Table 2). When sampling 
the whole range of lengths (Table 3), the smallest plus 
largest, and the largest lengths yielded relatively small 
bias values (-0.24 to -3.38 mm, 26-80 and 135-190 and 
135-190, respectively). Sampling the smallest length 
range produced the highest bias, followed by sampling 
the central range. Small values   of the RSE (Table 4), 
from 3.22 to 3.78%, were found for symmetric sam-
pling (whole range, and smallest and largest). When 
sampling only the largest range, the variability of  
more than doubled. The RMSE’s two components (bias 
and RSE) behaved similarly (Table 5).

Estimates of parameter k showed small biases when 
samples came from segments 26-80 and 135-190 mm 
(5.89 and 4.32%) (Table 3). The smallest bias occurred 
when samples came from the largest length segment. In 
general, when only one segment was sampled, the RB 
was always large. The size of the biases when sampling 
combined and separated segments was also observed in 
the RSE values (Table 4).

For t0 the largest bias was negative when samples 
came from the largest length segment, 135-190 mm 
(-459.66%). Relatively small biases resulted   when 
samples came from symmetric combinations of seg-
ments; when sampling separate segments, biases were 
larger (Table 3). The RSE (variability) values   showed 
the same described pattern: lower values   when sam-
pling symmetric combinations of length segments, 
and notably larger values   when sampling separate seg-
ments. Most of the magnitude of RMSE was due to 
variability of RSE.

Estimates of growth performance f’ were stable and 
small, changing from positive to negative when sam-
ples came from single length segments. When sampling 
came from combined segments, the global quality index, 
RMSE, took very small positive values (Table 5).

For the weight-length (W-L) relationship, the bias 
of coefficient a was smaller when samples came from 
segments containing the whole range of lengths, fol-
lowed by combined smallest and largest (Table 3). The 
RSE behaved similarly (Table 4): an increasing RMSE 
of coefficient a resulted when samples came from indi-
vidual segments (Table 5). Estimates of the exponent b 
were stable, as can be seen both in the RB values   and 
in the RSE values (Tables 3 and 4). This stability was 
also observed in the values of RSE and RMSE (Tables 
4 and 5).

The behaviour of estimated  was similar to that 
of : both had smaller biases and standard errors in 
configurations with extreme lengths (1 and 2) and in 
the larger lengths (last configuration).  showed a 
greater variability than  because of the variability of 
both  and the scale parameter a of the W-L relation-
ship. The value of parameter b did not influence varia-
tion of  because of its stability (Tables 2-5).

Figure 1 shows the scatter plots of 50 Kn values 
resulting from lengths simulated in the five configura-
tions. The upper-left panel is considered as reference, 
i.e. when there is no bias in the estimates of parame-
ters a and b. As observed, the Kn values were relatively 
well estimated, except when samples came from the 
largest length range. In this case, Kn values were un-
derestimated.

Fig. 1. – Mean relative condition factor values (Kn) for crabs of 50 estimated lengths randomly selected from each of five configurations. The 
upper-left panel is a reference graph that considers the true values of a and b, and lengths are sampled from the interval (26 to 190 mm). X 

axis, length values randomly   sampled from each configuration; Y axis, their corresponding Kn.

https://doi.org/10.3989/scimar.05313.062
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Table 6 shows the estimated means of parameters 
a and b for the five sampling configurations, as well as 
their comparisons with the true values of the parame-
ters. The first two configurations yielded similar esti-
mates of the true values of a and b.

In the first two sampling configurations, the ratios 
were close to one and the differences were almost zero. 
This is why the plots of Kn for the first two configura-
tions in Figure 1 are very similar to those presented in the 
reference plot (upper-left). Sampling from the central and 
larger length segments resulted in monotonic growth in 
the estimates  of a, and therefore monotonic decrease in 
the ratios , which ranged from 0.929 to 0.854.

A comprehensive visual analysis of the relative 
performance of the five sampling schemes can be 
observed by comparing the growth plots obtained us-
ing estimated parameters and plots using the baseline 
values (Fig. 2). The least biased plot resulted when 
samples contained the whole range of lengths (con-
figuration 1) and with the smallest and largest length 
segments (configuration 2). Poor fits resulted when 
samples came from configurations 3, 4 and 5; the worst 
fit resulted when samples came only from the smallest 
length range.

DISCUSSION

Sampling different size segments of a stock or popu-
lation will influence the estimates of individual growth, 
length-weight parameters, maximum theoretical indi-
vidual weight and two widely used measures of growth 
efficiency: growth performance index f’ and condition 

factor Kn. Using three relative measures of accuracy 
(bias, standard error and mean square error) and an a 
priori segmentation of length, we obtained results with 
practical applications. The standard deviation (sd) of 
0.1 used here covers +/-20% of possible values around 
the mean; however, due to chance, some values could 
lay outside such boundaries. Accuracy of parameter es-
timates can vary when different sd values are used, and 
this issue merits further research. The accuracy of pa-
rameter estimates does not necessarily depend on sam-
pling the entire length-age range possible, and the error 
is not the same for all parameters. Our results provide 
useful guidance to develop sampling schemes in the 
common case when time and resources are scarce. We 
caution that erred estimates of basic parameters, par-
ticularly von Bertalanffy individual growth, can lead 
to wrong values of other key parameters used in fisher-
ies management, for example, M natural mortality rate 
(see Maunder et al. 2023 for a recent review of various 
methods to estimate M).

To estimate the accuracy of parameters in our 
simulations we used three relative indices based on 
length-stratified age samples. Our main purpose in 
this paper was to simulate and compare samples rep-
resenting a balanced number of biased length samples 
to analyse possible effects in estimated values of pa-
rameters of general interest. Much larger sample sizes 
can and are often obtained; in our case, however, we 
struggled to provide insights for the common case of 
data-poor fisheries or limited resources for sampling. 
Other works (Xiao 1996, Perreault et al. 2020) used 
relative root mean squared error and RB of simulated 

Fig. 2. – Plots of length and age using the von Bertalanffy function with each set of parameters estimated for the five scenarios considered. 
Numbers in each panel indicate the size configuration according to Table 1. Full black line represents the best parameter estimates; red broken 

line represents the curves fitted with the parameters estimated considering the five different configurations.

https://doi.org/10.3989/scimar.05313.062
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and true values. In our case, we also used the RSE (Bar-
baro et al. 1981, Vølstad et al. 2011), another measure 
of accuracy of the parameter estimates as a function 
of the sampling configurations we tested. This statis-
tic evenly distributes the deviations between sampling 
configurations.

Incomplete length sampling may be caused by se-
lectivity of fishing gear and when catch is graded at sea 
or upon landing before samples can be taken. Natural 
behaviour of individuals may also cause misrepresen-
tation of length structures in samples. For the crab Ra-
nina ranina, for example, juveniles and adults spend 
considerable time buried and segregate by life history 
stage. Gear used for commercial fishing seldom catch-
es juveniles, which can produce erred estimates of vB 
growth parameters (Kirkwood et al. 2005).

Failure to produce robust estimates of growth pa-
rameters will inevitably curtail our ability to conduct 
good stock assessments to inform management (Gwinn 
et al. 2010). For example, given that fecundity general-
ly increases with individual size (Marshall et al. 2019), 
to maximize catch from a cohort, a yield-per-recruit 
analysis is often performed (Beverton and Holt 1957, 
Die et al. 1988, Zhai and Pauly 2019), which depends 
on individual growth parameters.

In the present work we sought parameter values that 
were closest to the true values that represented correct 
growth trajectories (Pardo et al. 2013). Previous sim-
ulation studies (e.g. Wilson et al. 2015) recommend 
combining samples from fishing gears with different 
selectivity to improve growth parameter estimates. It 
has been also proposed that to maximize accuracy of 
individual growth parameters, a complete represen-
tation of organisms from different sizes is needed, 
with two conditions: 1) evenly distributed sample sizes 
across age/size segments, and 2) sample sizes as large 
as possible (Quinn and Deriso 1999, Pilling et al. 2002, 
Shelton and Mangel 2012). Our simulation results in-
dicate that more subtle characteristics underly the final 
estimated values of growth parameters. A key element 
is to a priori take into consideration the configuration 
of possible size segments sampled (e.g. Table 1). Using 
simulations, Goodyear (1995) concluded that reliable 
estimates of mean size-at age require random sampling 
of lengths within ages, and that stratifying samples by 
length biased the estimates of mean length-at-age. It 
is not clear if samples were generated by splitting age 
into equal or different sizes. Goodyear (2019) sim-

ulated samples using two strategies relevant for the 
present work: samples stratified by age and by length; 
size-stratification produced biased estimates of length-
at-age and vB parameters. In this case, age strata were 
of one year, and length strata were constant.

In general, for the vB growth model, it was found 
that underrepresented small/large individuals yield 
small-biased k/large-biased  estimates, respectively 
(Taylor et al. 2005). Because of the inverse relation-
ship between k and  (Gubiani et al. 2012), biases of 
these two parameters vary in opposite directions. Also, 
stability of f’ with respect to the sampling segments 
results from the inverse correlation between the base-
10 logarithms of estimated parameters  and k (Pauly 
1998). If one parameter decreases, the other increases, 
so the product of terms that define f’ remains stable. 
Useful estimates of f’ requires sound sampling that, 
whenever possible, accounts for seasonal or annual 
variations in length composition of stocks (Mathews 
and Samuel 1990).

Estimated Kn depends on values of the weight-
length function. In the present work, because the dif-
ferences  are very close to zero and their contri-
bution to Kn is through an exponential function, their 
effect is practically negligible. Hence, the values   of Kn 
are merely a reflection of the values   taken by the ratios 

. In practical terms, symmetric sampling configura-
tions that include extreme length values result in prac-
tically unbiased estimates of parameters a and b (cf. 
Fig. 1). Samples with the largest individuals increased 
bias in coefficient a. This is in turn reflected in the scat-
ter plots of Kn. For parameter b, when samples came 
from separate segments, RSE values were very similar 
to the RMSE, which means that the variability compo-
nent is greater than the bias.

Our simulations showed that erroneous vB param-
eter estimates result when most or all individuals in 
the samples are of similar lengths. For practical pur-
poses, when the vB model fits the data and sampling 
resources are scarce, it is convenient to actively in-
clude the smallest and largest individuals in a sample 
(segments 1 and 3). If researchers are interested in es-
timating growth performance f’, it would be advisable 
to sample from the entire size range available using 
different fishing gears or sampling methods. These 
considerations are intended to guide sampling schemes 
and minimize erred estimates of growth and growth ef-
ficiency arising from lack of appropriate data.

Table 6. – Estimated values of a and b of the allometric weight-length relationship, and comparisons with their true values. For a, comparisons 
are made through the ratio a/â and for b through the difference .

Weight-length  
parameter

Sampling configuration (see Table 1)
Original 1 2 3 4 5

Estimate
â 1.79E-05 1.8E-05 1.8E-05 1.85E-05 1.89E-05 2.1E-05

3.349 3.350 3.349 3.347 3.349 3.351

Comparisons
a/â 1 0.997 0.997 0.970 0.929 0.854

. 0 -0.00054 0.00023 0.00187 0.00009 -0.00178
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