Contents lists available at ScienceDirect

Food Chemistry

journal homepage: www.elsevier.com/locate/foodchem

Impact of temperature and humidity conditions as abiotic stressors on the phytochemical fingerprint of oat (*Avena sativa* L.) sprouts

sessments in future applications.

Marely G. Figueroa-Pérez^a, Rosalía Reynoso-Camacho^b, Minerva Ramos-Gómez^b, Magdalena Mendoza-Sánchez^{b,c}, Iza F. Pérez-Ramírez^{b,*}

^a Universidad Tecnológica de Culiacán, Culiacán 80014, Sinaloa, Mexico

^b Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Querétaro, Mexico

^c Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro 76010, Querétaro, Mexico

ARTICLE INFO	A B S T R A C T
Keywords:	This study aimed to evaluate the effect of temperature (20, 25, and 30 °C) and relative humidity (RH, 50, 55, and
Oats	60 %) as abiotic stressors during oat (Avena sativa L.) germination using a 2-level factorial design with central
Oats Germination Phytochemicals LC-MS Chemometrics	point. UPLC-QToF-MS ^E identified eighty polyphenols, nine avenanthramides, twelve lignans, and five phytos- terols Notably, 100 % germination was achieved at 25 °C/60 % RH from day 3, yielding the longest radicle size. The highest content of most phenolic acids, avenanthramides, and lignans occurred at 30 °C/65 % RH, where 100 % germination was attained by day 5, but with a shorter radicle size. The best flavonoid and phytosterol profle was obtained at 20 °C/55 % RH, achieving only a 67 % germination rate. Therefore, while these conditions enhance the bioactive compound profile the associate decrease in germination metrics suggests potential distress

1. Introduction

Consumers are increasingly interested in acquiring food products with beneficial health properties, such as oat (*Avena sativa* L.). This cereal has attracted attention from researchers over the years resulting in increased interest from worldwide food industries to use this cereal as an ingredient in several food products, including breakfast cereals, bread, infant foods, and beverages.

Several studies have demonstrated the biological effects of oats, such as their antioxidant and hypolipidemic properties. In addition, this cereal is known to provide essential nutrients and health benefits associated mainly with its high dietary fiber content. Oat is also a rich source of a wide range of phenolic compounds avenanthramides, a group of *N*-cinnamoylanthrannilic acid derivatives exclusively found in this cereal (Gramza-Michałowska et al., 2018).

Recently, cereal sprouts have been the subject of different research studies due to their improved bioactive compounds and health benefits compared to grains, including antioxidant, hypolipidemic, hypoglycemic, anti-inflammatory, cardioprotective activities (Benincasa et al., 2019). During germination, protein content and quality improve, mineral availability increases, the glycemic index decreases, and antinutrients are reduced. This results in a nutritionally enhanced cereal (Singh et al., 2015). Moreover, the concentration of several bioactive compounds, including polyphenols, can be augmented during germination. For example, oat contains a high concentration of quinones, benzoic and cinnamic acids, flavonols, flavones, flavanones, anthocyanidins, aminophenols and their precursors, which have been increased by 3- to 4-fold during germination. Furthermore, avenanthramides concentration significantly increases during this process (Schendel, 2019).

effects. Consideration of both photochemical outcomes and germination yield is crucial for comprehensive as-

Seed germination and seedling emergence are the first critical steps for plant establishment. These processes depend highly on environmental conditions, such as temperature, water, light, and oxygen, which can affect their macro and micronutrient concentration. Particularly temperature and humidity are crucial factors that regulate germination, which both can act as abiotic stressors by inducing a local or systemic response during sprout development (Świeca et al., 2014), increasing the production of reactive oxygen species (ROS) that activate enzymatic and non-enzymatic detoxification systems such as the overproduction of phenolic compounds and other endogenous antioxidants that play an

https://doi.org/10.1016/j.foodchem.2023.138173

Received 21 June 2023; Received in revised form 13 November 2023; Accepted 6 December 2023 Available online 12 December 2023 0308-8146/© 2023 Elsevier Ltd. All rights reserved.

^{*} Corresponding author at: Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Querétaro 76010, Querétaro, Mexico. *E-mail addresses:* magdalena.mendoza@uaq.mx (M. Mendoza-Sánchez), iza.perez@uaq.mx (I.F. Pérez-Ramírez).

essential role in the regulation of plant metabolism (Benincasa et al., 2019).

Previous studies have explored the impact of these environmental factors on oat germination. For instance, El-Mouhamady et al. (2014) identified 25 °C as the optimal temperature for the activity of enzymes related to germination, highlighting the significance of temperature regulation in this process. Ding et al. (2019) and Jiménez-Pulido et al. (2022) observed time-dependent increases in total phenolic content during oat germination, effect that was also observed in avenanthramide levels by Feng et al. (2022) indicating the dynamic nature of phytochemical changes. Altogether, these previous studies demonstrate that germination combined with environmental stress could be a cheap and efficient process to improve the bioactive composition of oats. Unlike previous research that has focused on specific aspects such as growth, nutritional changes, polyphenols, and avenanthramides as isolated variables, this study stands out for its holistic approach, simultaneously measuring a wide range of bioactive compounds, including lignans and phytosterols, which have not been previously reported during oat germination. Therefore, the aim of this study was to evaluate the impact of temperature and relative humidity as abiotic stressors on oat sprouts' growth and phytochemical fingerprint.

2. Materials and methods

2.1. Vegetable materials

Oat (*Avena sativa* L.) grains were donated by Campo Experimental Bajío-Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (CEBAJ-INIFAP, Celaya, Guanajuato, México). First, oat grains (100 g) were soaked in 600 mL of 1.5 % sodium hypochlorite for 30 min at 30 °C. Then, oat grains were drained, washed, and soaked in distilled water at a 1:6 w/v ratio for 12 h. Afterward, as previously reported, hydrated grains were allocated in trays covered with a wet filter paper in a germination chamber for five days in darkness (Damazo-Lima et al., 2020). Afterward, oat sprouts were dried at 50 °C for 12 h and ground to a particle size < 0.5 mm. Finally, samples were stored at 4 °C protected from light until analysis.

The germination conditions evaluated in this study included a temperature range from 20 to 30 °C and a relative humidity (RH) range from 55 to 65 %, which were selected based on a preliminary study aimed at identifying a range of abiotic stressors for oat germination to avoid an important delay or inhibition in germination due to low temperature and/or relative humidity, and to avoid fungal growth due to high relative humidity. To assess the impact of these conditions as abiotic stressors on oat germination, we adopted a 2-level factorial design with a central point. The experiment was laid out in a randomized complete block design, consisting of three blocks, with each block having three replicates. Additionally, we included a non-germinated sample (oat grain) as a control for comparison.

2.2. Germination characteristics

Germination parameters were determined daily for five days. Germination percentage was determined as the number of seedlings fully emerged. Radicle length (mm) was measured with a vernier caliper.

2.3. Nutritional and non-nutritional composition

The nutrient composition was analyzed in oat grains and sprouts at different temperatures and RH conditions on the fifth day of germination, which was carried out as indicated in the official methods of the Association of Official Agricultural Chemists (AOAC). Protein (method 920.87), crude fat (method 920.85), crude fiber (method 962.09), ash (method 923.03), and moisture (method 925.10) (Horwitz, 2010). The content of carbohydrates was estimated by difference. As reported by

Latta and Eskin (1980), phytic acid was quantified in all samples.

2.4. Phytochemicals extraction

The phytochemical composition was analyzed in oat grains and sprouts at different temperatures and RH conditions on the fifth day of germination. Samples (25 mg) were extracted by ultrasound with 500 μ L of a 50:50 (v/v) methanol:water solution acidified with HCl to pH2 for 60 s. Then, samples were centrifuged at 25,000g for 5 min at 4 °C, and supernatants were recovered. The residue was re-extracted with 500 μ L of a 70:30 v/v acetone:water solution and centrifuged. Both supernatants were mixed, and the solvent was evaporated to dryness in a vacuum concentrator (SpeedVac, ThermoFisher Scientific, MA, USA). The samples were redissolved in 500 μ L of methanol (Mendoza-Sánchez et al., 2019). This extract was used to identify polar phytochemicals such as polyphenols, avenanthramides, and lignans.

Samples (50 mg) were extracted by ultrasound with 500 μ L of *n*-hexane for 60 s. Then, samples were centrifuged at 25,000g for 5 min at 4 °C, and supernatants were recovered. The residue was re-extracted with 500 μ L of *n*-hexane. Both supernatants were mixed, and the solvent was evaporated to dryness in a vacuum concentrator (Mendoza-Sánchez et al., 2019). Samples were redissolved in 500 μ L of isopropanol. This extract was used for the identification of non-polar phytochemicals such as phytosterols.

2.5. Phytochemical profile

An ultra-performance liquid chromatography (UPLC) coupled to a photodiode array detector (PDA) and a quadrupole time-of-flight mass spectrometer (QToF $\rm MS^E$) with an atmospheric pressure electrospray ionization (ESI) probe (Vion, Waters Co., MA, USA) were used for the identification of the polyphenols, avenanthramides, lignans, and phytosterols composition. The concentrated extracts previously described in section 2.3 were resuspended in 1 mL of mobile phase and filtered (PVDF syringe filters, 0.2 µm).

For the polyphenol and avenanthramide profile, samples (2 μ L) were injected into a C18 BEH Acquity column (100 \times 2.1 mm, 1.7 μ m, Waters Co., MA, USA) at 35 °C. The mobile phases used for this analysis were (A) water with 0.1 % formic acid and (B) acetonitrile with 0.1 % formic acid at 0.5 mL/min. The gradient settings were as follows: the initial conditions were 95/5 (A/B), which was maintained for 2 min, then modified to 5/95 (A/B) in a lineal gradient for 20 min, and was maintained for 3 min. Finally, the column was re-equilibrated at 95/5 (A/B) in 2 min and was maintained for 3 min, with a total time of 30 min.

For the phytosterol and lignan profile, samples (2 μ L) were injected into a C18 BEH Acquity column (100 × 2.1 mm, 1.7 μ m, Waters Co., MA, USA) at 35 °C. The chromatographic separation was achieved with water (A) and methanol (B) at 0.3 mL/min under the following gradient conditions: the initial conditions were 90/10 (A/B), which were modified to 100/0 in a lineal gradient for 5.5 min, and was maintained for 2 min. Then, the column was re-equilibrated at 90/10 in 2 min and was maintained for 1 min, with a total time of 10 min (Reynoso-Camacho et al., 2021).

The mass spectrometry conditions were as follows: the source temperature was set at 120 °C, the desolvation gas (N₂) was set at 450 °C and 800 L/h, and the cone gas flow at 50 L/h. Data were acquired at MS^E with the sensitivity analyzer mode using a mass scan range of 50–1800 *m/z*. The collision energy was set at 5 eV for low energy and 15–45 eV for the high energy ramp. Leucine-enkephalin (50 pg/mL, 556.2766 *m/z*) was used for lock mass correction, which was infused in a 5 min interval for 2 s at 10 μ L/min (Rodríguez-González et al., 2018). Data were acquired using the UNIFI software (Waters Co., MA, USA).

The phytochemical analysis performed can be characterized as a semi-targeted approach. Molecular formulas of the target components were sought during data processing, guided by predefined specifications including expected adducts, mass error < 10 ppm, isotopic similarity >

98 %, and characteristic fragments from literature and mass spectra databases. Total ion chromatograms (TIC) at low and high collision energy are included in Fig. 1S.

In this study, the quantification of various phytochemical compounds was conducted using the external standard method with commercial standards or, when specific standards were not available, similar compounds were used. Gallic acid was employed as the standard for the quantification of gallic acid and its derivatives, protocatechuic acid for hydroxybenzoic acids and their derivatives, caffeic acid for derivatives of caffeic acid, chlorogenic acid for all caffeoylquinic acids, p-coumaric acid for coumaric acid and its derivatives, ferulic acid for ferulic acid and its derivatives, epicatechin for epicatechin and its glucoside derivative, catechin for catechin and its glucoside derivative, quercetin for quercetin and its derivatives, kaempferol for kaempferol and its derivatives, luteolin for luteolin and its derivatives, apigenin for apigenin and its derivatives, daidzin for daidzin and its derivatives, genistin for genistin derivatives, avenanthramide A for all avenanthramides, and β -sitosterol for all phytosterols except β -campesterol, which had its own standard. Additionally, syringic acid, vanillic acid, benzoic acid, cinnamic acid, synaptic acid, ellagic acid, gallocatechin, and epigallocatechin gallate were used for the quantification of their respective compounds.

2.6. Statistical analysis

Data are shown as mean \pm standard deviation of three replicates. Kolmogorov-Smirnov's and Levene's tests were used for identifying data distribution and homoscedasticity. Statistical significance was determined by ANOVA followed by Tukey's test (p < 0.05). All univariate statistical analyses were carried out with JMP software (v10). Multivariate statistical analysis was carried out through Partial Least Square-Discriminant Analysis (PLS-DA) and Variable Importance in the Projection (VIP) score vs. coefficient plots were obtained. Multivariate analyses were carried out in Metaboanalyst v5.0 software.

3. Results

3.1. Effect of temperature and humidity on germination percentage and radicle size of oat sprouts

The growth parameters of oats sprouted at different temperatures and relative humidity are shown in Table 1. Germination at 60 and 65 % RH improved the germination percentage to 97–100 %, whereas treatments with a lower RH did not reach a high germination percentage on day 5. Interestingly, an accelerated germination rate was observed at 25 °C and 60 % RH since the highest germination percentage (99.7 %) Table 1

Effect of temperature and relative humidity conditions on the percentage of germination and radicle size of oat (*Avena sativa* L.) sprouts.

Germination	Oat sprouts										
day	20 °C/55 % RH	20 °C/65 % RH	25 °C/60 % RH	30 °C/55 % RH	30 °C/65 % RH						
Germination per	rcentage (%)										
1	$4\pm1.5d$	$5\pm0.6\text{e}$	$4\pm1.2c$	$2\pm0.6c$	$2\pm0.6d$						
2	$17\pm2.9c$	$47 \pm$	$40 \pm$	$19 \pm$	$26\pm 4.6c$						
		2.6d	13.1b	14.4b							
3	44 \pm	$55\pm0.0c$	100 \pm	$36 \pm$	$83 \pm$						
	0.6b		0.6a	2.1ab	8.1b						
4	$55\pm4.2a$	$83 \pm$	100 \pm	$65 \pm \mathbf{2.5a}$	$97 \pm$						
		2.5b	0.0a		2.9ab						
5	$67 \pm \mathbf{8.0a}$	$97 \pm 1.5a$	$100 \pm$	$69 \pm 1.7a$	$100 \pm$						
			0.0a		0.0a						
Radicle size (cm	l)										
1	0.14 \pm	0.13 \pm	0.15 \pm	0.10 \pm	0.11 \pm						
	0.04c	0.01d	0.01c	0.00c	0.02c						
2	0.23 \pm	$1.13~\pm$	$0.22 \pm$	$0.51 \pm$	0.62 \pm						
	0.85bc	0.41c	0.06c	0.24c	0.47bc						
3	$1.54 \pm$	$1.17 \pm$	$3.63 \pm$	$1.69 \pm$	1.88 \pm						
	0.38b	0.50b	0.65b	0.29b	0.25b						
4	3.08 \pm	$2.47 \pm$	$6.49 \pm$	3.01 \pm	$2.93 \pm$						
	0.26a	0.88ab	0.32a	0.31a	0.76ab						
5	$3.75 \pm$	4.17 \pm	$6.57 \pm$	4.01 \pm	4.49 \pm						
	0.12a	0.91a	0.24a	0.26a	0.41a						

Data are expressed as mean values \pm standard deviation of three replicates. Different letters indicate significant (p < 0.05) differences among germination days within each condition by Tukey's test. RH: relative humidity.

was reached on the third day. Moreover, this germination condition led to the most significant radicle size of oat sprouts from the fourth day, 1.5–1.7-fold higher than the maximum radicle size obtained with the other germination conditions on day 5.

3.2. Effect of temperature and humidity on the nutrient composition of oat sprouts

The nutrient and non-nutrient composition of oats sprouted at different temperatures and relative humidity conditions is shown in Table 2. All germination conditions significantly (p < 0.05) increased protein (1.1–1.6-fold) content and decreased total, soluble, and insoluble dietary fiber (2.2–2.9, 3.2–9.3, and 1.8–2.4-fold, respectively) as well as phytic acid (5.5–11.0-fold). Similarly, ash content was decreased with most germination conditions (1.3–3.2-fold), except when sprouting was carried out at 25 °C and 60 % RH. On the other hand, no clear trend was observed in fat content since oats sprouted at 20 °C/55 % RH and 25 °C/60 % RH showed an increased fat content (1.3-fold), whereas oats

Fig. 1. PLS-DA plot (A) of the phytochemical characterization of oat (Avena sativa L.) sprouts grown under different germination conditions, and VIP plots of component 1 (B) and component 2 (C). PLS-DA: partial least square-discriminant analysis; VIP: variable important in the projection; OG: oat grain; OS: oat sprout.

Table 2

Effect of temperature and relative humidity conditions on the nutrient composition and phytic acid of oat (*Avena sativa* L.) sprouts.

Parameter		Oat sprouts									
	Oat grain	20 °C/ 55 % RH	20 °C/ 65 % RH	25 °C/ 60 % RH	30 °C/ 55 % RH	30 °C/ 65 % RH					
Protein (%)	8.83	14.25	12.62	10.05	14.29	14.07					
	±	±	±	±	±	±					
	0.23d	0.20a	0.17b	0.04c	0.38a	0.05a					
Carbohydrates	73.37	73.81	77.46	71.08	74.31	75.11					
(%)	±	±	±	$\pm 0.7c$	±	±					
	1.10b	1.10b	0.90a		0.90b	1.5ab					
Fat (%)	4.41	5.59 \pm	4.87 \pm	5.55 \pm	4.43 \pm	$\textbf{2.22} \pm$					
	±	0.14a	0.01b	0.01a	0.04ab	0.16c					
	0.20b										
Ash (%)	3.99	$2.35~\pm$	1.25 \pm	$3.62 \pm$	$4.77~\pm$	$3.00~\pm$					
	±	0.11d	0.06e	0.10b	0.23a	0.27c					
	0.30b										
Moisture (%)	9.40	$4.00~\pm$	$3.80~\pm$	9.70 \pm	$2.20~\pm$	5.60 \pm					
	±	0.30c	0.30c	0.20a	0.20d	0.00b					
	0.70a										
Dietary fiber (%)											
Total	73.53	33.12	25.26	33.15	29.34	30.95					
	±	±	±	±	±	±					
	2.51a	4.19b	2.24b	4.65b	2.20b	2.68b					
Soluble	18.49	5.83 \pm	2.44 \pm	$\textbf{2.28} \pm$	$1.99~\pm$	$\textbf{2.02} \pm$					
	±	0.68b	0.49c	0.52c	0.40c	0.09c					
	0.74a										
Insoluble	55.04	27.29	22.82	30.87	27.35	28.92					
	±	±	±	±	±	±					
	1.89a	3.69b	1.94c	4.23b	1.87b	2.60b					
Phytic acid (g)	0.44	$0.08 \pm$	$0.07 \pm$	0.04 \pm	$0.08 \pm$	$0.06 \pm$					
J	±	0.02b	0.03b	0.00c	0.02b	0.02bc					
	0.00a										

Data are expressed as mean values \pm standard deviation of three replicates. Different letters indicate significant (p < 0.05) differences among germination conditions by Tukey's test. RH: relative humidity.

sprouted at 30 $^{\circ}$ C/65 % RH showed a decreased fat content as compared to oat grain (2.0-fold).

3.3. Effect of temperature and humidity on the phytochemical composition of oat sprouts

This study identified 80 polyphenols in oat grains and sprouts grown at different temperatures and humidity conditions. These compounds were classified as follows: sixteen hydroxycinnamic acids, eighteen hydroxybenzoic acids, seven flavanols, twenty-four flavonols, ten flavanones, and five isoflavones (Table 3).

Interestingly, twenty-four polyphenols were synthesized *de novo* during oat germination since they were not detected in oat grains, from which only three polyphenols were synthesized under all germination conditions. Conversely, six polyphenols were found at a greater concentration in oat grains as compared to all oat sprouts: dihydroxybenzoic acid hexoside (PA_7), syringic acid (PA_11), gallic acid ethyl ester (PA_14), sinapic acid (PA_22), kaempferide (F_23), and acetyldaidzin (F_46), which were found depleted by 1.2–3.2-fold in oat sprouts. Moreover, one minor polyphenol was only identified in oat grains: quercetin rhamnoside (F_11).

Overall, the most significant content of most polyphenols was found when the oat was sprouted at 30 °C/55 % RH, kaempferol rhamnosyl hexoside rhamnoside (F_18) as the primary compound, followed by gallic acid (PA_1), feruloylquinic acid (PA_24), luteolin apiosyl malonyl hexoside (F_34), which were found increased by 1.4–4.9-, 2.3–10.2-, 2.3–45.2-, and 3.5–55.7-fold as compared to those of other germination conditions. Moreover, caffeic acid hexoside (PA_17) was only identified at this germination condition. On the other hand, oats sprouted at 30 °C/ 65 % RH synthesized a high content of apigenin apiosyl hexoside (F_33) and kaempferyl rhamnosyl hexoside rhamnoside (F_{18}), which were 1.3–64.7-fold higher than those of other oat sprouts.

A total of nine avenanthramides were identified in oat grains and sprouts (Table 4). Interestingly, eight avenanthramides were identified in oat grains, of which six were significantly (p < 0.05) increased when germination was carried out at 30 °C/65 % RH (3.5–16.9-fold). The major avenanthramides found in oats sprouted at this condition were avenanthramide B (A_4), G (A_2), and L (A_6). In addition, Avenanthramide D was produced during germination since this compound was not identified in oat grains but was found in all oat sprouts.

Regarding lignans, seven compounds were identified in oat grains, of which five were significantly increased by some germination conditions (L_1, L_3, L_7, L_9, and L_11). In contrast, two lignans, secoisolariciresinol-sesquilignan (L_8) and matairesinol (L_12) were maintained or decreased during oat germination (1.4- and 1.2-fold down, respectively). Conversely, five lignans were synthesized during oat germination: medioresinol (L_2), hydroxymatairesinol (L_4), acetoxypinoresinol (L_5), syringaresinol (L_6), and isolariciresinol (L_10). Interestingly, oats sprouted at 30 °C and 65 % RH condition showed the highest amount of lignans, closely followed by oats sprouted at 30 °C and 55 % RH (Table 4).

Finally, five phytosterols were identified in oat grain and oats sprouts (Table 4). The major phytosterol identified in the oat grain was stigmasterol hexoside, which was maintained when the oat was sprouted at 20 °C and 65 % RH. However, it was significantly decreased under the other germination conditions (1.1–7.9-fold). Conversely, campesterol hexoside was synthesized *de novo* when the oat was sprouted at 20 and 30 °C and 55 % RH.

3.4. Chemometric analysis

Multivariate analyses were carried out to better understand the effect of germination temperature and relative humidity as abiotic stressors that caused the modification of the oat phytochemical profile. The PLS-DA model plot of the phytochemical (polyphenol, avenanthramide, lignan, and phytosterol) profile of oat grain and sprouts is shown in Fig. 1. The model explained an overall variance of 86.9 %, showing clear discrimination between the experimental groups. According to the crossvalidation, the performance of the PLS-DA model showed an R2 value of 0.83 and a Q2 value of 0.74 with two components, obtaining a p < 0.01with the separation distance random permutation test (100 cycles), indicating adequate predictability and goodness of fit.

Component 1 (explained variance of 61.4 %) separated oat grains (OG) and oats sprouted at 20 °C and 55 % RH and at 25 °C and 60 % RH from oats sprouted at 30 °C and 55 and 65 % RH, whereas the component 2 (explained variance of 24.7 %) separated oat grains and oats sprouted at 20 °C and 65 % RH and at 30 °C and 55 % RH from oats sprouted at 20 °C and 55 % RH, at 25 °C and 60 % RH, and 30 °C and 65 % RH (Fig. 1A). The main phytochemicals responsible for the separation in both components were apigenin apiosyl hexoside (F_33), which was one of the significant components of oats sprouted at 30 °C and 65 % RH, followed by kaempferol rhamnosyl hexoside rhamnoside (F_18), the major phytochemical of oats sprouted at 30 °C at 55 and 65 % RH (Fig. 1B and 1C).

The coefficient score plot of each experimental group is shown in Fig. 2, where the main phytochemicals that characterized each group are distinguished. Interestingly, oat grains (Fig. 2A) and oats sprouted at 30 °C and 55 % RH (Fig. 2E) were distinguished by their lack of luteolin apiosyl malonyl hexoside (F_34) and their relatively low content of gallic acid (PA_1). In contrast, oats sprouted at 20 °C and 65 % RH were characterized by a high content of these polyphenols. On the other hand, oats sprouted at 30 °C and 65 % RH (Fig. 2F) were distinguished by their high content of kaempferol rhamnosyl hexoside rhamnoside (F_18) and apigenin apiosyl hexoside (F_33), which were found at low concentration in oats sprouted at 20 °C and 55 % RH (Fig. 2B).

Table 3

Polyphenol profile assessed by UPLC-QTOF MS^E of oat (*Avena sativa* L.) sprouts grown under different germination conditions.

ibentification (min) fermals maxe (b)	Code	Tentantive identification	Rt M (min) fo	Molecular	Expected	Observed mass (Da)	Mass error (ppm)	Concentration (µg/g)						
by b				formula	mass (Da)			Oat grain	Sprout 20 °C/ 55 % RH	Sprout 20 °C/ 65 % RH	Sprout 25 °C/ 60 % RH	Sprout 30 °C/ 55 % RH	Sprout 30 °C/ 65 % RH	
PA.1 Galle add* 1.0 C71000 120.0216 0.01 44.2 4.21 1.4 <th1.4< th=""> <th1.4< th=""> 1.4</th1.4<></th1.4<>	Hydrox	vbenzoic acids												
PA2Photocyberanic acid1.15O'Ha03138.030138.0301.08 $37 \pm$ $44 \pm$ $1.44 \pm$ $1.44 \pm$ $3.44 \pm$ $1.46 \pm$ $3.42 \pm$ $1.71 \pm$ $1.44 \pm$ $3.44 \pm$ $1.46 \pm$ <th< td=""><td>PA_1</td><td>Gallic acid*</td><td>1.03</td><td>C7H6O5</td><td>170.0215</td><td>170.0216</td><td>0.61</td><td>$48.2 \pm 1.1c$</td><td>42.1 ± 3.2c</td><td>$51.9 \pm 3.6c$</td><td>29.2 ± 1.8d</td><td>298.1 ± 1.2a</td><td>130.8 + 7.7b</td></th<>	PA_1	Gallic acid*	1.03	C7H6O5	170.0215	170.0216	0.61	$48.2 \pm 1.1c$	42.1 ± 3.2c	$51.9 \pm 3.6c$	29.2 ± 1.8d	298.1 ± 1.2a	130.8 + 7.7b	
PA index optimized and index of interms Class interms Obset interms Since interms	PA_2	Hydroxybenzoic acid	1.15	C7H6O3	138.0317	138.0320	1.98	3.7 ±	5.4 ±	$14.4 \pm$	$16.5 \pm$	14.6 ±	33.4 ±	
No. No. <td>PA 3</td> <td>Hydroxybenzoic acid</td> <td>1 15</td> <td>C13H16O8</td> <td>300 0845</td> <td>300 0838</td> <td>-2 38</td> <td>0.6c 8.0 +</td> <td>1.3c 17.8 +</td> <td>1.7b 31.8 +</td> <td>0.1b 37.5 +</td> <td>1.2b 32 3 +</td> <td>0.7a 71 7 +</td>	PA 3	Hydroxybenzoic acid	1 15	C13H16O8	300 0845	300 0838	-2 38	0.6c 8.0 +	1.3c 17.8 +	1.7b 31.8 +	0.1b 37.5 +	1.2b 32 3 +	0.7a 71 7 +	
PA.4 Potocatechule scile 1.5 CH004 P5.00 -4.4 ND 5.0 8.5 8.2 2.1 1.1 1.3 PA.5 Galic acid hexoside 1.26 C13H10010 332.074 -8.82 24.2 35.4 10.1 55.4 12.1	111_0	hexoside	1.10	010111000	500.0015	500.0050	2.00	0.4d	1.8c	1.6b	1.6b	3.7b	2.7a	
PASGallic add hexolde1.26Cl 3H:001332.074332.074-6.827.427.341.21.341.01.100.10PA.6Gallic add gallae1.90Cl 4H:00932.032532.03445.9048.18.17N.0N.01.100.12PA.7Dibydrosphemozia add1.4Cl 3H:00932.074431.0.8801.906.2.23.0.42.72.343.11.741.35PA.8Gallic add hexolde1.80Cl 3H:01032.074432.0734-2.710.742.722.343.11.741.541.741.551.541.541.541.741.541.741.541.741.541.741.541.741.541.741.541.741.541.741.541.741.541.741.541.541.541.541.541.541.541.541.541.541.541.541.541.541.541.541.54 <td>PA_4</td> <td>Protocatechuic acid*</td> <td>1.15</td> <td>C7H6O4</td> <td>154.0266</td> <td>154.0259</td> <td>-4.43</td> <td>ND</td> <td>5.0 ±</td> <td>8.5 ±</td> <td>9.2 ±</td> <td>$11.1 \pm$ 0.4b</td> <td>18.1 ± 1.32</td>	PA_4	Protocatechuic acid*	1.15	C7H6O4	154.0266	154.0259	-4.43	ND	5.0 ±	8.5 ±	9.2 ±	$11.1 \pm$ 0.4b	18.1 ± 1.32	
bddddddddddddddddddddPADibydroxybenzoi caid1.54(13H160)316.074316.0741.66(1.6(2.232.0744.302.2747.22.321.61.6PAGulle caid hexaside1.82(13H160)32.07332.073-2.71(2.02.4330.10.04.535.741.604.525.741.604.525.741.601	PA_5	Gallic acid hexoside	1.26	C13H16O10	332.0743	332.0714	-8.82	$24.2~\pm$	0.20 35.4 ±	$19.1 \pm$	$35.4 \pm$	$12.3 \pm$	1.5a 6.0 ±	
PA 6 Outle data gaine 1.30 Carlino of 3.22.033 3.22.047 5.00 R.1 6.01 0.0 1.23 2.00 1.23 2.00 1.23 2.00 1.23 2.00 1.23 2.00 1.24 1.30 PA 7 become B.2 C.3116000 32.00734 32.00734 -2.07 2.02 2.03 2.27.1 4.00 1.00<	DA 6	Callia asid callata	1.20	C14U1000	222 0225	222.0244	F 00	0.4b	4.3a	0.3c	0.7a	1.1d	0.1e	
PA.7Disydromybenois end horson1.54C.3311007316.007316.007316.00720.230.32.7232.4732.274.722.8450.1PA.8Galler and beoxide Horson scale1.8C.331100732.077432.20734-2.7120.024.3430.3124.3450.341.541.5457.41.541.5457.41.541.5457.41.551.541.551.541.551.541.551.551.541.551.541.551.541.551.541.551.541.551.551.551.541.55 <td>PA_0</td> <td>Game acto gamate</td> <td>1.39</td> <td>C14H1009</td> <td>322.0325</td> <td>322.0344</td> <td>5.90</td> <td>48.1 ± 2.1c</td> <td>81.7 ± 4.8b</td> <td>ND</td> <td>ND</td> <td>$121.9 \pm 2.2a$</td> <td>ND</td>	PA_0	Game acto gamate	1.39	C14H1009	322.0325	322.0344	5.90	48.1 ± 2.1c	81.7 ± 4.8b	ND	ND	$121.9 \pm 2.2a$	ND	
PA.8 Galla acid henoside 1.82 C13H16010 332.0743 332.074 332.0743 32.074 24.5 24.5 21.6 4.0 4.52 1.53 PA.9 Dibydroxybenzoic aidd 1.87 C7H604 154.0266 154.026 5.3.3 7.2 1.6 0.4 1.1 0.0 0.4 1.1 0.5 1.1 1.53 1.37 1.16.9 1.37 1.38 0.4 1.2 0.4 1.37 1.38 0.4 1.6 0.4 1.37 1.38 1.37 1.37 1.36 0.4 1.6 0.4 1.57 1.38 0.4 1.6 1.6 0.4 <	PA_7	Dihydroxybenzoic acid	1.54	C13H16O9	316.0794	316.0801	1.96	62.2 ±	30.3 ±	22.7 ±	47.2 ±	23.8 ±	50.1 ±	
1.0.1.0.1.0.1.0.1.5.1	PA_8	Gallic acid hexoside	1.82	C13H16O10	332.0743	332.0734	-2.71	0.7a 20.0 ±	2.7c 24.3 ±	2.3d 39.1 ±	3.2b 40.0 ±	1.7d 48.2 ±	1.3D 55.8 ±	
PA 0 Dillydroxybenzoic acid 1.87 C7H604 154.0226 1.40223 -2.05 5.3 ± 5.7 ± 6.1 ± 16.9 ± 7.7 ± 16.9 ± PA 10 Hydroxybenzoic acid* 3.17 C7H603 138.0317 13.80315 -1.33 4.6 ± 12.8 ± 0.5 ± 1.2 a 0.6 d 0.7 b NN N	-							1.0c	2.2c	2.0b	1.1b	2.5a	1.5a	
PA10 index optension and the symbolic and the	PA_9	Dihydroxybenzoic aicd	1.87	C7H6O4	154.0266	154.0263	-2.05	5.3 ± 1.1c	5.7 ± 0.8c	$6.1 \pm 0.1 \text{ bc}$	$16.9 \pm 0.4a$	7.7 ± 1.1b	16.9 ± 0.5a	
μring syning acid λ.2 β.91005 198.052 198.052 -2.02 -3.02	PA_10	Hydroxybenzoic acid*	3.17	C7H6O3	138.0317	138.0315	-1.33	4.6 ±	$12.8 \pm$	$7.2 \pm$	45.9 ±	5.1 ±	$13.7 \pm$	
N.1. Sympleticat Strike of Markov Floring of Markov Strike of Markov Strike of Markov Strike of Markov Strike of Markov PA.12 Vamilic acid* 4.05 G8H804 168.0416 -4.14 S1 ± 6.9 ± 1.00 0.30 0.50 0.52 0.52 PA.13 Berzoic acid* 4.20 C7H602 122.0370 1.55 9.54 1.64 0.24 5.84 2.02 ± 6.64 0.64 0.55 0.63 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.74 0.64 0.64 0.74 0.64 0.74 0.96 0.64 0.74 0.96 0.64 0.74 0.96 0.76 0.96 0.76 0.96 0.74 0.75 0.74 0.96 0.74 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.76 <td< td=""><td>PA 11</td><td>Svringic acid*</td><td>3 21</td><td>C9H10O5</td><td>198 0528</td><td>198 0512</td><td>-8.02</td><td>1.1d 39.8 +</td><td>3.1b 124+</td><td>0.2c 19.7 +</td><td>1.2a ND</td><td>0.6d ND</td><td>0.7b ND</td></td<>	PA 11	Svringic acid*	3 21	C9H10O5	198 0528	198 0512	-8.02	1.1d 39.8 +	3.1b 124+	0.2c 19.7 +	1.2a ND	0.6d ND	0.7b ND	
PA12Vanille add*4.05CMB04168.0423168.0476-1.45.1 ±6.9 ±5.5 ±5.2 ±5.5 ±6.0 ±0.300.500.200.530.530.530.550.760.96PA.16Galitic acid ethyl ester4.10.7110154.0265154.0265154.02651.96.80.282.28 ±3.24 ±1.69 ±1.06 ±0.760.990.400.700.760.990.400.700.760.990.400.700.957.4	111_11	by migic acia	0.21	0,111000	190.0020	190.0012	0.02	2.6a	0.5c	1.0b	ILD .	ПD	nD	
PA,13 Benzoic acid* 4.20 CTH602 122.0368 122.0376 1.55 0.74 1.46 0.40 0.30 0	PA_12	Vanillic acid*	4.05	C8H8O4	168.0423	168.0416	-4.14	$5.1 \pm$	6.9 ±	$5.5 \pm$	5.2 ±	5.5 ±	6.0 ±	
PAL4 Bille and ethyl series A.4 OFH1005 PB8.052 PB.0512	PA_13	Benzoic acid*	4.20	C7H6O2	122.0368	122.0370	1.55	0.70 29.4 ±	1.0a 14.6 ±	$24.2 \pm$	58.4 \pm	$20.2 \pm$	0.3a 46.4 ±	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DA 14	Calling and advantages	4 41	00111005	100.0500	100.0510	0.44	0.3c	1.2d	0.1c	2.1a	1.5c	3.0b	
PA15Dilydroxybenzoic acid4.79C/TH604154.0260154.0260-0.582.8432.4 ±16.9 ±16.9 ±9.5 ±8.5 ±PA16Hydroxybenzoic acid6.64C/TH603138.037138.037138.0321.9812.5 ±12.2 ±10.7 ±9.6 ±13.2 ±10.1 ±PA17Caffeic acid hexoside1.44C15H1809342.091342.091-9.44NNNNDND3.5 ±ND<	PA_14	Gallic acid etnyl ester	4.41	C9H1005	198.0528	198.0512	-8.44	9.5 ± 1.6a	6.9 ± 0.5b	3.8 ± 0.1e	5.5 ± 0.2c	4.4 ± 0.5d	6.9 ± 0.4b	
PA,16 Hydroxybenzoic acid 6.64 C7H003 138.0370 138.0370 12.25 11.24 10.24 0.76 0.99 0.34 0.35 0.78 0.74 0.74 0.74 0.78	PA_15	Dihydroxybenzoic acid	4.79	C7H6O4	154.0266	154.0265	-0.58	22.8 \pm	32.4 \pm	16.9 \pm	19.6 \pm	9.5 ±	$8.5 \pm$	
Hydroxy: Image: acids Bit was acids	PA 16	Hydroxybenzoic acid	6.64	C7H6O3	138.0317	138.0320	1.98	3.0b $12.5 \pm$	1.9a 11.2 ±	0.7c 10.7 ±	0.9b 9.6 ±	0.4d 13.2 \pm	0.7d 10.4 ±	
Hydroxy-innamic acids PA17 Caffe caid hexoside 1.44 C15H1809 342.0951 342.0951 -9.34 ND ND ND ND 5.4 S.4 PA18 Caffeoylquinic cid 2.39 C16H1809 354.0951 354.0951 -4.51 ND 1.8 ± 3.3 ± ND 0.2a 0.1a PA19 Ferulic acid hexoside 3.55 C16H2009 356.1107 356.1104 -0.80 2.4 ± 3.5 ± ND 1.0 ± 0.7e 1.40 1.40 1.40 ± PA20 Caffeoylquinic acid ⁴ 3.81 C16H1809 354.0951 354.0923 -7.96 2.4 ± 3.5 ± ND 1.20 ± ND .07e 1.40 ± PA22 Sinapic acid ⁴ A.01 C1H1205 22.6002 -0.07 ND ND 2.2 ± 9.2 ± 1.64 0.7e 1.54 1.64 0.7E 1.64 0.7E 1.64 0.60 0.50 0.54 4.0 0.7a PA24 Fordoylquini acid								0.9a	0.3ab	0.5b	0.5b	0.7a	0.9b	
NucleLand	Hydrox PA 17	<i>cinnamic acids</i> Caffeic acid hexoside	1 44	C15H18O9	342,0951	342.0919	-9.34	ND	ND	ND	ND	100.1 +	ND	
PA18 Caffeoylquinic acid 2.39 Cl6H1809 35.40951 35.40935 -4.51 ND 1.8 ± 3.3 ± ND 3.5 ± 3.3 ± 0.1a PA19 Ferulic acid hexoside 3.55 Cl6H2009 356.1107 356.1104 -0.80 2.37 ± 17.7 ± 57.4 ± 19.0 ± 89.9 ± 69.8 ± PA20 Caffeoylquinic acid* 3.81 Cl6H1809 354.0023 -7.766 2.4 ± 3.5 ± ND 1.0 ± ND 1.0 ± 1.0 ± 2.9 ± 51.1 ± 2.9 ± 51.1 ± 1.0 ± </td <td>,</td> <td>dancie dela neliobilie</td> <td></td> <td>010111005</td> <td>01210501</td> <td>0 1210313</td> <td>5101</td> <td>112</td> <td>112</td> <td>112</td> <td>112</td> <td>5.4</td> <td>112</td>	,	dancie dela neliobilie		010111005	01210501	0 1210313	5101	112	112	112	112	5.4	112	
PA 19 Ferulic acid hexoside 3.55 C16H2009 356.1107 356.1104 -0.80 $23.7 \pm$ $17.7 \pm$ 57.4 $19.0 \pm$ $69.9 \pm$	PA_18	Caffeoylquinic acid	2.39	C16H18O9	354.0951	354.0935	-4.51	ND	$1.8 \pm$ 0.1b	3.3 ± 0.2a	ND	3.5 ± 0.2a	3.3 ± 0.1a	
PA 20 Caffeoylquinic acid* 3.81 C16H1809 364.0951 354.0923 -7.96 2.4 ± 3.5 ± ND 1.02 ND 1.04 2.99 PA 21 Coumaric acid hexoside 3.99 C15H1808 326.1002 326.1002 -7.95 ND ND 52.6 ± 4.5 ± 51.0 ± 25.1 ± PA 22 Sinapic acid* 4.01 C11H1205 224.0655 224.0676 -3.74 12.9 ± 5.3 ± 9.3 ± 6.2 ± 9.2 ± 10.0 ± PA 23 Caffeoylquinic acid 4.01 C11H1205 224.0675 -354.0949 -0.58 ND 5.1 ± 12.0 ± 5.8 ± 12.0 ± 16.3 ± 17.0 ± 16.3 ± 16.0 ± 5.1 ± 12.0 ± 5.8 ± 12.0 ± 16.3 ± 12.0 ± 5.8 ± 13.0 ± 13.0 ± 13.5 ± 13.5 ± 13.5 ± 13.5 ± 13.5 ± 13.5 ± 12.0 ± 12.0 ± 13.5 ± 12.0 ± 13.5 ± 13.5 ± 13.5 ± 13.5 ± 13.5 ± 13.5 ± 1	PA_19	Ferulic acid hexoside	3.55	C16H20O9	356.1107	356.1104	-0.80	$23.7~\pm$	$17.7 \pm$	57.4 ±	19.0 \pm	89.9 ±	69.8 ±	
PA_20 Carteryquint atu 3.01 Chrinolog 3.04,921 5.04,921 -7.30 $2,4 \pm$ $3,5 \pm$ RB RD R	DA 20	Coffeevlauinic ocid*	3.91	C16H18O0	354 0051	354 0023	7.06	1.9d 2.4 ⊥	0.7e 35⊥	0.4c	0.7e 12.0 ⊥	1.9a	2.9b 14.0 ⊥	
PA.21 Coumaric acid hexoside 3.99 C15H1808 326.1002 326.1002 -0.05 ND ND 52.6± 4.5± 51.0± 25.1± PA.22 Sinapic acid* 4.01 C11H1205 224.0665 224.0676 -3.74 12.9± 5.3± 0.3± 0.2± 0.2± 0.0± PA.23 Caffeoylquinic acid 4.05 C16H1809 354.0951 354.0949 -0.58 ND 5.1± 12.9± 5.3± 0.4±	FA_20	Caneoyiquine aciu	5.61	010111009	334.0931	334.0923	-7.90	2.4 ⊥ 0.1c	0.1b	ND	12.0 ⊥ 0.6a	ND	14.0 ⊥ 0.7a	
PA 22 Sinapic acid ⁺ 4.01 C11H1205 224.0685 224.0676 -3.74 $12.9 \pm$ $5.3 \pm$ $0.3c$ $0.7b$ $0.5c$ $2.1a$ $10.0 \pm$ PA 23 Caffeoylquinic acid 4.05 C16H1809 354.0951 354.0949 -0.58 ND $5.1 \pm$ $12.9 \pm$ $5.8 \pm$ $12.0 \pm$ $6.5 \pm$ $0.2b$ $0.4b$ PA 24 Feruloylquinic acid 4.10 C17H2009 368.1107 368.1107 0.84 $16.0 \pm$ $5.7 \pm$ $6.7 \pm$ $17.3 \pm$ $257.6 \pm$ $11.3 \pm$ PA 25 Caffei acid ^a 4.16 OH804 180.0423 180.0416 -3.90 $5.9 \pm$ $5.8 \pm$ $3.6 \pm$ $4.5 \pm$ $3.0 \pm$ $3.5 \pm$ $0.4a$ $0.2b$ $0.8d$ $11.1 \pm$ $4.5 \pm$ $3.5 \pm$ $0.4a$ $0.2b$ $0.8d$ $11.1 \pm$ $3.5 \pm$ $0.4a$ $0.2b$ $0.8d$ $1.6 \pm$ $0.5 \pm$ $1.2c$ $0.8d$ $1.5 \pm$ $0.4a$ $0.2b$ $0.4a$ $1.2b$	PA_21	Coumaric acid hexoside	3.99	C15H18O8	326.1002	326.1002	-0.05	ND	ND	52.6 ±	4.5 ±	51.0 ±	$25.1 \pm$	
PA.2Caffeoylquinic acid4.05C16H1809354.0951354.0951368.0949 -0.58 0.61 0.61 $0.7b$ $0.6c$ $0.2b$ $12.0 \pm$ $16.0 \pm$ $16.0 \pm$ PA.24Feruloylquinic acid4.10C17H2009 368.1107 368.110 0.84 $16.0 \pm$ $5.7 \pm$ $67.7 \pm$ $17.3 \pm$ $257.6 \pm$ $13.5 \pm$ PA.25Caffeic acid*4.16C9H804 180.0423 180.0416 0.80 $16.0 \pm$ $5.7 \pm$ $67.7 \pm$ $17.3 \pm$ $257.6 \pm$ $13.5 \pm$ PA.26Diferuloylquinic acid4.58C27H28012 544.1581 544.1533 -8.70 ND $33.7 \pm$ ND ND ND ND PA.27Feruloylquinic acid5.98C17H2009 568.1107 264.1583 -8.70 ND $30.2 \pm$ ND <td>PA_22</td> <td>Sinapic acid*</td> <td>4.01</td> <td>C11H12O5</td> <td>224.0685</td> <td>224.0676</td> <td>-3.74</td> <td>12.9 \pm</td> <td>5.3 \pm</td> <td>1.6a 9.3 ±</td> <td>0.30 6.2 ±</td> <td>2.1a 9.2 ±</td> <td>$1.60 \pm 10.0 \pm$</td>	PA_22	Sinapic acid*	4.01	C11H12O5	224.0685	224.0676	-3.74	12.9 \pm	5.3 \pm	1.6a 9.3 ±	0.30 6.2 ±	2.1a 9.2 ±	$1.60 \pm 10.0 \pm$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DA 00		4.05	01(111000	054 0051	054.0040	0.50	0.9a	0.3c	0.7b	0.6c	0.2b	0.4b	
PA 24 Feruloylquinic acid 4.10 C17H2009 368.1107 368.1101 0.84 $16.0 \pm$ $5.7 \pm$ $67.7 \pm$ $17.3 \pm$ $257.6 \pm$ 113.5 PA 25 Caffeic acid* 4.16 C9H804 180.0423 180.0416 -3.90 $5.9 \pm$ $5.8 \pm$ $3.6 \pm$ $4.5 \pm$ $3.0 \pm$ $3.5 \pm$ PA 26 Diferuloylquinic acid 4.58 C27H28012 544.1581 544.1533 -8.70 ND $3.6 \pm$ $0.5 \pm$ $0.6 +$ $-0.6 +$	PA_23	Caffeoylquinic acid	4.05	C16H1809	354.0951	354.0949	-0.58	ND	5.1 ± 0.0c	12.9 ± 0.5b	5.8 ± 0.3c	12.0 ± 0.4b	16.3 ± 0.7a	
PA_25 Caffeic acid* 4.16 C9H804 180.0423 180.0416 -3.90 5.9 ± 5.8 ± 3.6 ± 4.5 ± 3.0 ± 3.5 ± PA_26 Diferuloylquinic acid 4.58 C27H28012 544.1581 544.1533 -8.70 ND 33.7 ± ND ND<	PA_24	Feruloylquinic acid	4.10	C17H20O9	368.1107	368.1110	0.84	16.0 \pm	5.7 ±	67.7 ±	17.3 ±	257.6 \pm	113.5	
PA_26Diferuloylquinic acid4.58C27H28O12544.1581544.1533 -8.70 $0.7a$ ND $0.4a$ $0.2b$ $0.5ab$ $0.1b$ ND ND PA_27Feruloylquinic acid4.58C27H28O12 544.1581 544.1533 -8.70 ND $33.7 \pm$ 0.6 ND <td>PA 25</td> <td>Caffeic acid*</td> <td>4.16</td> <td>C9H8O4</td> <td>180.0423</td> <td>180.0416</td> <td>-3.90</td> <td>0.9d 5.9 ±</td> <td>0.9e 5.8 ±</td> <td>1.2c 3.6 ±</td> <td>0.8d 4.5 ±</td> <td>21.1a 3.0 ±</td> <td>\pm 4.5b 3.5 \pm</td>	PA 25	Caffeic acid*	4.16	C9H8O4	180.0423	180.0416	-3.90	0.9d 5.9 ±	0.9e 5.8 ±	1.2c 3.6 ±	0.8d 4.5 ±	21.1a 3.0 ±	\pm 4.5b 3.5 \pm	
PA_26 Diteruloyiquinic acid 4.58 C27H28012 544.1581 544.1533 -8.70 ND $33.7 \pm$ 0.6 ND								0.7a	0.4a	0.2b	0.5ab	0.1b	0.4b	
PA_27 Feruloylquinic acid 5.09 C17H2009 368.1107 368.1109 0.45 3.2 ± MD 11.0 ± 4.1 ± 27.5 ± 14.3 ± PA_28 p-Coumaric acid* 5.13 C9H803 164.0473 164.0475 1.16 3.4 ± 3.0 ± 37.2 ± 6.7 ± 18.0 ± 11.1 ± PA_29 Cinnamic acid* 5.37 C9H802 148.0524 -0.37 20.5 ± 4.4 ± 3.0 ± 6.9 ± 2.8 ± 3.3 ± PA_29 Cinnamic acid* 5.37 C9H802 148.0524 -0.37 20.5 ± 4.4 ± 3.0 ± 6.9 ± 2.8 ± 3.3 ± PA_30 Ellagic acid* 5.60 C14H608 302.0063 302.0058 -1.65 56.2 ± 63.8 ± 60.8 ± 59.4 ± 68.9 ± 56.5 ± 3.3 ± 6.6 ± 0.30 0.30 PA_31 Ferulic acid* 5.65 C10H1004 194.0579 194.0579 0.15 5.2 ± 11.8 ± 16.8 ± 16.0 ± 21.5 ± 19.6 ± PA_32 (iso)Ferulic acid 6.01 C10H1004 194.0579	PA_26	Diferuloylquinic acid	4.58	C27H28O12	544.1581	544.1533	-8.70	ND	33.7 ± 0.6	ND	ND	ND	ND	
PA_28 p-Coumaric acid* 5.13 C9H803 164.0473 164.0475 1.16 $3.4 \pm$ $3.0 \pm$ $37.2 \pm$ $6.7 \pm$ $18.0 \pm$ $11.1 \pm$ PA_29 Cinnamic acid* 5.37 C9H802 148.0524 -0.37 $20.5 \pm$ $4.4 \pm$ $3.0 \pm$ $3.2 \pm$ $6.7 \pm$ $1.80 \pm$ $11.1 \pm$ PA_29 Cinnamic acid* 5.37 C9H802 148.0524 -0.37 $20.5 \pm$ $4.4 \pm$ $3.0 \pm$ $6.9 \pm$ $2.8 \pm$ $3.3 \pm$ PA_30 Ellagic acid* 5.60 C14H608 302.0063 302.0058 -1.65 $56.2 \pm$ $63.8 \pm$ $60.8 \pm$ $59.4 \pm$ $68.9 \pm$ $56.5 \pm$ PA_31 Ferulic acid* 5.65 C10H1004 194.0579 194.0579 0.15 $5.2 \pm$ $11.8 \pm$ $16.8 \pm$ $16.0 \pm$ $21.5 \pm$ 1.64 PA_32 IsopFerulic acid C10H1004 194.0579 194.0579 0.15 $5.2 \pm$ $11.8 \pm$ $16.8 \pm$ $16.0 \pm$ $21.5 \pm$ $10.6 \pm$ PA_33 IsopFerulic acid C10 C10H1004 194.0	PA_27	Feruloylquinic acid	5.09	C17H20O9	368.1107	368.1109	0.45	$\textbf{3.2} \pm$	ND	11.0 \pm	4.1 \pm	$\textbf{27.5} \pm$	14.3 \pm	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PA 28	p-Coumaric acid*	513	C9H8O3	164 0473	164 0475	1 16	0.0e 34+	30+	0.4c 37.2 +	0.6d 6.7 +	2.1a 18.0 +	0.5b 11.1 +	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	111_20	r soumarie actu	0.10	371000	101.0770	101.0770	1.10	0.7e	0.5e	3.2a	0.6d	1.2b	0.6c	
PA_30 Ellagic acid* 5.60 C14H6O8 302.0063 302.0058 -1.65 56.2 ± 63.8 ± 60.8 ± 59.4 ± 68.9 ± 56.5 ± PA_31 Ferulic acid* 5.65 C10H1004 194.0579 194.0579 0.15 5.2 ± 11.8 ± 16.8 ± 16.0 ± 21.5 ± 19.6 ± PA_32 (iso)Ferulic acid 6.01 C10H1004 194.0579 194.0582 1.53 3.8 ± 8.6 ± 7.3 ± 6.0 ± 8.1 ± 5.6 ± PA_32 (iso)Ferulic acid 6.01 C10H1004 194.0579 194.0582 1.53 3.8 ± 8.6 ± 7.3 ± 6.0 ± 8.1 ± 5.6 ± PA_33 Diferuloylquinic acid 6.28 C27H28012 544.1581 544.1527 -9.82 ND 5.9 ± 6.1 ± 6.5 ± 6.1 ± 11.2 ± 0.7b 0.1b 0.6b 0.2b 0.8a PA_34 Feruloylquinic acid 6.62 C17H2009 368.1107 368.1119 3.24 ND ND 17.5 ± ND 4.0 ± ND	PA_29	Cinnamic acid*	5.37	C9H8O2	148.0524	148.0524	-0.37	$20.5 \pm$	4.4 ±	3.0 ±	$6.9 \pm 0.7b$	2.8 ±	3.3 ± 0.34	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PA_30	Ellagic acid*	5.60	C14H6O8	302.0063	302.0058	-1.65	$56.2 \pm$	63.8 ±	60.8 ±	59.4 ±	68.9 ±	56.5 ±	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DA 21	Ferulic acid*	5 65	C10H1004	10/ 0570	104 0570	0.15	0.3b	5.9a	1.9ab	1.2ab	6.4a	0.8b	
PA_32 (iso)Ferulic acid 6.01 C10H1004 194.0579 194.0582 1.53 3.8 ± 8.6 ± 7.3 ± 6.0 ± 8.1 ± 5.6 ± PA_33 Diferuloylquinic acid 6.28 C27H28012 544.1581 544.1527 -9.82 ND 5.9 ± 6.1 ± 6.5 ± 6.1 ± 11.2 ± PA_34 Feruloylquinic acid 6.62 C17H2009 368.1107 368.1119 3.24 ND ND 17.5 ± ND 4.0 ± ND	14_91	reruit aciu	5.05	010111004	177.03/9	177.03/9	0.15	0.8d	$11.0 \pm 1.0c$	$10.8 \pm 1.0b$	10.0 ± 0.9b	1.0a	$19.0 \pm$ 1.0a	
PA_33 Diferuloylquinic acid 6.28 C27H28012 544.1581 544.1527 -9.82 ND 5.9 ± 6.1 ± 6.5 ± 6.1 ± 11.2 ± PA_34 Feruloylquinic acid 6.62 C17H2009 368.1107 368.1119 3.24 ND ND 17.5 ± ND 4.0 ± ND	PA_32	(iso)Ferulic acid	6.01	C10H10O4	194.0579	194.0582	1.53	3.8 ±	8.6 ±	7.3 ±	6.0 ±	8.1 ±	5.6 ±	
PA_34 Feruloylquinic acid 6.62 C17H2009 368.1107 368.1119 3.24 ND ND 17.5 ± ND 4.0 ± ND	PA_33	Diferuloylquinic acid	6.28	C27H28O12	544.1581	544.1527	-9.82	ND	0.3a 5.9 ±	6.1 ±	0.2c 6.5 ±	0.5a 6.1 ±	$11.2 \pm$	
r_{0} r_{1} r_{1} r_{1} r_{2} r_{2	DA 94	Ferulovlavinia asid	6 60	C17U2000	260 1107	260 1110	0.04	ND	0.7b	0.1b	0.6b	0.2b	0.8a	
0.2a 0.2b	rn_34	rerutoyiquille actu	0.02	G1/HZ009	300.110/	300.1119	3.24	UN	IND	17.5 ± 0.2a	IND.	4.0 ± 0.2b	ND	

(continued on next page)

M.G. Figueroa-Pérez et al.

Table 3 (continued)

Code	Tentantive	Rt	Molecular	Expected	Observed	Mass	Concentration (µg/g)					
	identification	(min)	formula	mass (Da)	mass (Da)	error (ppm)	Oat grain	Sprout 20 °C/ 55 %	Sprout 20 °C/ 65 %	Sprout 25 °C/ 60 %	Sprout 30 °C/ 55 %	Sprout 30 °C/ 65 %
								RH	RH	RH	RH	RH
Flavanol	s	1.04	015111.405	004 07 40	006 0700	0.00		10	ND	0.4	0.6	ND.
F_1	(+)-Gallocatechin*	1.36	C15H1407	306.0740	306.0730	-3.08	1.4 ± 0.1d	1.9 ± 0.1c	ND	3.4 ± 0.1a	2.6 ± 0.1b	ND
F_2	(-)-Epigallocatechin	1.38	C22H18O11	458.0849	458.0875	5.68	ND	ND	$2.8 \pm$ 0.1b	ND	3.7 ±	2.9 ±
F_3	(-)-Epigallocatechin*	4.61	C15H14O7	306.0740	306.0712	-9.02	$3.9~\pm$	$3.9~\pm$	$2.5 \pm$	6.4 ±	ND	0.0D 3.8 ±
F 4	(-)-Enicatechin*	5.04	C15H14O6	200 0700	290.0763	-9.60	0.1b	0.2b 6.0 +	0.1c	0.2a	63+	0.2b 5.5.+
1.4	(-)-Epicatechin	5.04	015111400	290.0790	290.0703	-9.00	0.3ab	0.3ab	0.0 ± 0.1	0.9 ± 0.4a	0.3 ± 0.2ab	0.1b
F_5	(+)-Catechin*	5.71	C15H14O6	290.0790	290.0776	-4.92	ND	$7.0 \pm 0.2b$	ND	11.5 ± 0.2a	$7.1 \pm 0.4b$	ND
F_6	(-)-Epicatechin hexoside	5.89	C21H24O11	452.1319	452.1349	6.70	ND	4.2 ±	10.0 ±	ND	ND	4.5 ±
F_7	(+)-Catechin hexoside	6.87	C21H24O11	452.1319	452.1350	6.99	7.4 ±	0.3b 13.1 \pm	0.5a 10.1 ±	7.9 ±	5.1 \pm	0.2b 11.5 ±
Flavoral							0.3c	0.4a	0.3b	0.6c	0.7d	1.3b
Flavonol F_8	<i>s</i> Quercetin dihexoside	3.15	C27H30O17	478.0747	478.0786	8.02	3.6 \pm	7.4 ±	8.7 ±	ND	32.4 \pm	17.4 \pm
FQ	Kaempferol acetyl	3 53	C23H22O12	490 1111	490 1144	6 72	0.1e ND	0.2d ND	0.3c 4 9 +	ND	0.9a ND	2.6b ND
1.72	hexoside	5.55	0231122012	490,1111	490.1144	0.72	ND	ND	4.9⊥ 0.1	ND	ND	ND
F_10	Myricetin rutinoside	5.13	C27H30O17	626.1483	626.1498	2.41	7.9 ± 0.4a	8.0 ± 0.22	$6.1 \pm 0.3c$	$6.8 \pm$ 0.2b	6.2 ± 0.2c	7.9 ± 0.3a
F_11	Quercetin rhamnoside	5.19	C21H20O11	448.1006	448.0997	-1.93	6.3 ±	ND	ND	ND	ND	ND
F_12	Quercetin hexoside	5.48	C33H40O21	772.2062	772.2015	-6.10	$\begin{array}{c} 0.8 \\ 6.6 \end{array} \pm$	7.2 ±	10.6 \pm	8.5 \pm	12.4 \pm	$17.3 \pm$
-	rhamnosyl hexoside	- /-	007100016	(10.1504	(10.1515	0.00	0.6e	0.5de	0.3c	0.3d	0.6b	0.0a
F_13	Kaempferol diffexoside	5.67	C27H30O16	610.1534	610.1517	-2.80	19.0 ± 1.5c	ND	26.2 ± 0.6b	15.8 ± 0.6	ND	33.4 ± 0.8a
F_14	Quercetin rutinoside*	5.67	C27H30O16	610.1534	610.1545	1.88	ND	$18.5 \pm$	$21.1 \pm$	$19.1 \pm$	22.9 ±	ND
F_15	Quercetin malonyl	5.89	C24H22O15	550.0959	550.0973	2.69	ND	$25.9 \pm$	0.3a 32.4 ±	$24.4 \pm$	$35.3 \pm$	ND
F 16	hexoside Kaempferol hexoside	5 94	C21H20O11	448 1006	448,1000	-1.27	ND	0.9b ND	1.1a ND	0.7b 9.8 +	3.7a ND	191+
1_10		0.51	GETTIEGOTT	11012000	11012000	112/		112	112	0.6b		0.2a
F_17	Kaempferol trihexoside	6.33	C33H40O21	772.2062	772.2037	-3.24	$10.5 \pm 1.0b$	6.3 ± 0.1c	$12.3 \pm 0.6a$	ND	$11.5 \pm 1.5ab$	14.2 ± 0.6a
F_18	Kaempferol rhamnosyl	6.33	C34H40O21	740.2164	740.2148	-2.07	681.3	208.2	877.6	284.8	1024.9	902.6
	nexoside mannoside						$^{\pm}$ 22.5c	± 8.3e	± 18.00	± 0.20	± 24.3a	± 30.3ab
F_19	Kaempferol acetyl	6.73	C29H32O16	636.1690	636.1639	-8.13	ND	4.5 ±	ND	ND	ND	ND
F_20	Kaempferol malonyl	6.73	C24H22O14	534.1010	534.1025	2.81	14.7 \pm	$16.6 \pm$	$14.2 \pm$	15.6 \pm	13.6 \pm	13.3 \pm
F 21	hexoside Ouercetin*	7.86	C15H10O7	302.0427	302.0398	-9.51	1.3b 5.2 ±	1.1a 4.2 ±	0.8b 6.0 ±	0.9ab ND	0.5b 4.4 ±	0.9b 4.4 ±
-	V. (14	0.05	015111007	006.0477	006.0460	0.00	1.3ab	0.1b	0.2a	ND	0.2b	0.2b
F_22	Kaempferol*	8.85	C15H10O6	286.0477	286.0469	-3.03	$2.5 \pm 0.1b$	3.6 ± 0.2a	ND	ND	ND	ND
F_23	Kaempferide	8.97	C16H11O6	299.0556	299.0578	7.39	8.9 ±	ND	$3.4 \pm$	ND	$3.6 \pm$	3.9 ±
F_24	(iso)Rhamnetin	9.05	C16H12O7	316.0583	316.0575	-2.65	6.9 ±	$7.2 \pm$	6.9 ±	5.8 \pm	5.7 ±	ND
F 25	Kaempferol hexoside	917	C27H30O15	594 1585	594 1578	-1.06	1.5ab ND	0.7a 11.9 +	0.1a ND	0.2b ND	0.2b ND	ND
	rhamnoside							0.5				
F_26	Quercetin acetyl hexoside rhamnoside	10.08	C29H32O17	652.1639	652.1594	-6.98	$4.4 \pm 0.9b$	$3.9 \pm 0.0b$	ND	ND	6.2 ± 0.2a	ND
F_27	Quercetin hexoside	11.01	C21H20O12	464.0955	464.0956	0.22	6.7 ±	7.9 ±	5.8 ±	6.9 ±	6.9 ±	7.6 ±
F_28	Kaempferol hexoside	12.81	C33H40O20	756.2113	756.2123	1.33	0.4a ND	$8.2 \pm$	ND	0.4a ND	0.7a ND	0.7a 6.5 ±
E 20	rhamnosyl hexoside Muricetin rhamposide	13.28	C21H20O12	464 0055	464 0007	0.14	20.8 ±	0.2a 22.1 ⊥	001	ND	176 -	0.3b 35.0 ±
1-29	wynceun mannoside	13.20	0211120012	404.0933	404.0997	5.14	29.8 ⊥ 1.4b	22.1 ⊥ 0.8c	0.4e	ND	17.0 ± 1.8d	1.4a
F_30	Kaempferol xylosyl hexoside	13.41	C26H28O15	580.1428	580.1392	-6.21	7.8 ± 0.0a	$8.2 \pm 0.8a$	7.8 ± 0.2a	7.9 ± 0.6a	ND	7.2 ± 0.6a
F_31	Quercetin hexoside	13.83	C27H30O16	610.1534	610.1560	4.30	ND	ND	ND	ND	6.4 ±	ND
Flavones	rhamnoside										0.3	
F_32	Luteolin rutinoside	5.38	C27H30O15	594.1585	594.1578	-1.13	$10.6 \pm$	$3.1 \pm$	$5.5 \pm$	6.1 ±	7.2 ±	25.3 ±
F_33	Apigenin apiosyl	5.48	C26H28O14	564.1479	564.1461	-3.28	50.1 ±	13.7 ±	110.1	252.1	182.6 ±	886.6
	hexoside						5.7e	2.2f	\pm 10.9d	\pm 20.4b	18.8c	± 65.2a
											(commuted on	пелі раде)

Table 3 (continued)

Code	Tentantive identification	Rt	Molecular formula	Expected mass (Da)	Observed mass (Da)	Mass error (ppm)	Concentration (µg/g)					
		(min)					Oat grain	Sprout 20 °C/ 55 % RH	Sprout 20 °C/ 65 % RH	Sprout 25 °C/ 60 % RH	Sprout 30 °C/ 55 % RH	Sprout 30 °C/ 65 % RH
F_34	Luteolin apiosyl malonyl hexoside	5.66	C29H30O18	666.1432	666.1464	4.75	ND	16.9 ± 3.2c	ND	59.9 ± 4.4b	$\begin{array}{c} 211.5 \pm \\ 27.3a \end{array}$	3.8 ± 0.2d
F_35	Luteolin hexoside	6.37	C21H20O11	448.1006	448.0997	-1.96	$3.1~\pm$ 0.5a	ND	ND	ND	3.3 ± 0.1a	$2.2 \pm 0.1b$
F_36	Luteolin malonyl hexoside	6.73	C24H22O14	534.1010	534.1025	2.81	8.9 ± 1.3a	9.0 ± 1.1a	8.0 ± 0.2b	8.9 ± 0.5a	7.7 ± 0.3b	7.6 ± 0.5b
F_37	Luteolin*	7.80	C15H10O6	286.0477	286.0456	-7.53	ND	ND	ND	ND	ND	4.9 ± 0.2
F_38	Apigenin hexoside	8.30	C21H20O10	432.1056	432.1041	-3.49	$\begin{array}{c} 52.4 \pm \\ 1.3a \end{array}$	47.7 \pm 5.4ab	$\begin{array}{c} \textbf{32.4} \pm \\ \textbf{1.5d} \end{array}$	39.3 ± 1.8c	45.7 ± 1.1b	42.2 ± 2.6bc
F_39	Luteolin apiosylhexoside	8.41	C26H28O15	580.1428	580.1392	-6.21	4.5 ± 0.0a	4.7 ± 0.5a	4.4 ± 0.1a	4.4 ± 0.7a	ND	4.4 ± 0.1a
F_40	Apigenin*	8.66	C15H10O5	270.0528	270.0523	-2.10	ND	$2.3~\pm$ 0.4a	ND	ND	2.2 ± 0.2a	1.7 ± 0.0b
F_41	Apigenin dihexoside	9.17	C27H30O15	594.1585	594.1578	-1.06	ND	$\begin{array}{c} \textbf{6.9} \pm \\ \textbf{0.2} \end{array}$	ND	ND	ND	ND
Isoflavo	nes											
F_42	Malonyldaidzin	6.77	C24H22O12	502.1111	502.1125	2.79	ND	ND	6.9 ± 0.3b	8.9 ± 0.2a	6.1 ± 0.4b	3.8 ± 0.1c
F_43	Acetylgenistin	6.84	C23H22O11	474.1162	474.1203	8.73	$\begin{array}{c} 25.5 \pm \\ 0.4a \end{array}$	$22.4 \pm 1.3a$	$\begin{array}{c} \textbf{26.5} \pm \\ \textbf{0.4a} \end{array}$	$\begin{array}{c} 23.9 \pm \\ 0.5a \end{array}$	17.5 ± 0.7b	$24.3 \pm 1.3a$
F_44	Daidzin*	7.72	C21H20O9	416.1107	416.1075	-7.81	$1.3~\pm$ 0.1b	$1.7~\pm$ 0.1a	ND	ND	1.6 ± 0.4a	ND
F_45	Malonylgenistin	8.35	C24H22O13	518.1060	518.1054	-1.24	$7.8 \pm 0.4a$	6.5 ± 0.4b	$5.2 \pm 0.2c$	6.4 ± 0.3b	8.0 ± 0.5a	ND
F_46	Acetyldaidzin	9.12	C23H22O10	458.1213	458.1251	8.39	$\begin{array}{c} 15.9 \pm \\ 0.6a \end{array}$	$\begin{array}{c} 11.5 \pm \\ 0.5 bc \end{array}$	$\begin{array}{c} 11.9 \pm \\ 0.3 bc \end{array}$	$\begin{array}{c} 12.6 \pm \\ 0.8 b \end{array}$	$\begin{array}{c} 11.2 \pm \\ 0.3c \end{array}$	$\begin{array}{c} 10.0 \pm \\ 0.6d \end{array}$

Data are expressed as mean values \pm standard deviation of three replicates. Different letters indicate significant (p < 0.05) differences among germination conditions by Tukey's test. ND: Not detected. *Identification confirmed by comparison with commercial standard.

4. Discussion

While exploring the combination of temperature and relative humidity conditions on oat germination, it's essential to frame our observations within the context of eustressors and distressors (Godínez-Mendoza et al., 2023). The identified optimal germination condition at 25 °C/60 % RH, yielding 100 % germination with the longest radicle size. Notably, among the tested conditions, no distinct eustressor was observed, which must improve both germination metrics and secondary metabolites synthesis. Germination at 30 °C/65 % RH, resulting in the highest content of phenolic acids, avenanthramides, and lignans but with a shorter radicle size despite 100 % germination, suggest a potential distressor role, indicating a trade-off between secondary metabolites production and growth metrics. Similarly, the germination conditions at 20 °C/55 % RH, showcasing the optimal profile of flavonoids and phytosterols but with a lower germination rate, hints at distressor conditions, where the phytochemical composition may be prioritized at the expense of germination performance. This distinction between eustressors and distressors provides valuable insights into the dynamic interplay of environmental factors and oat germination responses, contributing to a nuanced understanding of how abiotic stressors influence both growth and phytochemical composition.

It is well-known that environmental temperature significantly affects the speed and percentage of seed germination. Each plant species has an optimal germination temperature range that promotes water uptake, thereby facilitating various biochemical reactions and physiological processes essential for germination (de Oliveira et al., 2013). However, it is necessary to distinguish between optimal conditions, where environmental factors are conducive to efficient germination, and abiotic stress conditions, where these factors deviate from the optimal range, potentially hindering germination processes. In our study, we intentionally selected a range of temperature and relative humidity conditions to explore their impact as abiotic stressors on phytochemical composition, evaluating the overall adaptability of oat sprouts by measuring germination growth parameters.

Several authors have determined the optimal germination temperatures for some seeds such as Senna macranthera (Collad.), Ocotea odorifera (Vellozo), Tabebuia impetiginosa, and T. serratifolia Vahl Nich, finding that most of them ranged between 20 and 30 °C (de Oliveira et al., 2013). Furthermore, El-Mouhamady et al. (2014) evaluated two different temperatures during oat growth and identified that 25 °C was optimum for the activity of several enzymes related to the germination process. It has been suggested that as the temperature rises, there is increased water energy producing an elevation in the diffusion pressure that promotes the metabolic activity and decreases the internal potential of the seed, accelerating its water absorption rate, which causes an increase in the germination speed. Conversely, germination processes carried out at temperatures higher than the optimal could potentially affect enzymatic activity, reducing the amount of available amino acids essential for the metabolic reactions involved in embryo development and thus restricting seed germination (Maraghni et al., 2010).

On the other hand, when the germination process occurs at temperatures lower than optimal, there is a decreased metabolic activity rate, which affects crucial processes involved in the initial stages of germination. The level of disturbance depends on the plant species, water content, temperature, and exposure time. However, in most cases, it is observed that low temperatures reduce the speed and percentage of germination and increase the average germination time, which is attributed to a reduction proline and fatty acid synthesis rate (Noblet et al., 2017).

On the other hand, several studies have shown the importance of relative humidity on sprout growth rate since high relative humidity levels might improve the production yield during germination. For example, in sesame seeds germinated in a dark chamber maintained at 35 °C and 100 % RH the germination rate was higher than 99 % (Hahm et al., 2009). On the other hand, Limwiwattana et al. (2016) found that increasing relative humidity improved the size of the black gram sprouts, finding greater lengths of sprouts at 80 % RH than those at 60 %

Table 4

Aventhramide, lignin, and phytosterol profiles assessed by UPLC-QTOF MS^E of oat (Avena sativa L.) sprouts grown under different germination conditions.

Code	Tentative	ive Rt Molecular Expected ication (min) formula mass (Da)	Molecular	Expected	Observed	Mass	Concentration (µg/g)					
	identification		mass (Da)	mass (Da)	error (ppm)	Oat grain	Sprout 20 °C/ 55 % RH	Sprout 20 °C/ 65 % RH	Sprout 25 °C/ 60 % RH	Sprout 30 °C/ 55 % RH	Sprout 30 °C/ 65 % RH	
Avenan	thramide											
A_1	Avenanthramide C	6.65	C16H13NO6	315.0743	315.0741	-0.46	5.3 \pm	3.3 \pm	$6.9 \pm$	ND	8.4 \pm	18.6 \pm
							0.0d	0.2e	0.0c		0.6b	1.1a
A_2	Avenanthramide G	7.33	C16H13NO5	299.0794	299.0789	-1.74	$\textbf{28.2} \pm$	ND	$39.2~\pm$	$25.5~\pm$	ND	136.0
							0.4c		0.3b	1.0c		± 5.4a
A_3	Avenanthramide 1c	7.34	C16H13N05	299.0794	299.0789	-1.55	33.5 ±	ND	19.6 ±	ND	31.3 ±	ND
Δ Δ	Avenanthramide B	7.66	C17H15N06	320 0800	320 0800	_0.24	1.4a 16.2 +	126+	1.0D 44 5 +	23.1 +	1.5a 29.6 +	101 0
11_1	Tivenantananae D	7.00	01/110100	029.0099	529.0099	0.21	1.7d	1.2e	0.4b	0.7c	1.2c	\pm 4.5a
A_5	Avenanthramide 2 s	8.09	C18H17N07	359.1005	359.1003	-0.57	$2.6 \pm$	$2.7 \pm$	5.6 \pm	$4.5 \pm$	$7.5 \pm$	43.8 \pm
							0.4d	0.2d	0.8c	0.3c	1.4b	1.7a
A_6	Avenanthramide L	8.49	C18H15NO5	325.0950	325.0957	1.99	$6.9 \pm$	6.1 \pm	$35.1 \pm$	$\textbf{48.9} \pm$	71.2 \pm	131.2
		0.07	01 (111 01) 05	000 0704	000 070/		0.1e	0.4e	1.8d	1.5c	4.2b	\pm 7.4a
A_7	Avenanthramide A*	8.87	C16H13N05	299.0794	299.0786	-2.44	8.3 ±	7.4 ±	2.5 ±	1.7 ±	1.6 ±	9.2 ±
4.8	Avenanthramide D	9 71	C16H13NO4	283 0845	283 0867	7 79	0.8aD	0.4D 77+	0.10 63.7 ±	0.0a 71.5 +	0.10 80 7 +	0.4a 104 2
A_0	Avenantinalinde D	9.71	01011151104	203.0043	203.0007	1.19	ND	/./⊥ 0.9d	03.7 ⊥ 1.2c	1.2 bc	6.9h	+1.0a
A 9	Avenanthramide E	9.85	C17H15NO5	313.0950	313.0933	-5.45	$0.6 \pm$	ND	ND	3.5 ±	ND	$1.5 \pm$
-							0.0c			0.1a		0.1b
Lignans												
L_1	Lariciresinol-	6.33	C30H36O10	556.2308	556.2359	9.05	$8.1 \pm$	$30.7 \pm$	11.8 \pm	ND	53.4 \pm	50.3 \pm
1.0	sesquilignan	6.61	001110407	000 1500	000 1557	0.00	0.4d	1.8b	0.6c	ND	2.7a	2.7a
L_Z	Medioresinoi	6.61	C21H2407	388.1522	388.1557	9.09	ND	ND	$77.1 \pm 2.0c$	ND	89.5 ± 6.5b	104.8 + 2.42
L 3	Isohvdroxymatairesinol	7.53	C20H22O7	374,1366	374,1372	1.67	$17.3 \pm$	8.7 +	2.00 16.7 +	10.0 +	9.7 +	19.2 +
							1.0b	1.1c	0.5b	0.1d	0.0c	1.0a
L_4	Hydroxymatairesinol	7.54	C20H22O7	374.1366	374.1343	-6.00	ND	ND	ND	ND	9.6 \pm	ND
											0.5	
L_5	Acetoxypinoresinol	7.75	C22H24O8	416.1471	416.1499	6.81	ND	ND	47.2 ±	91.6 ±	130.0	196.6
LC	Cruzin concein el	7.07	C221126/00	410 1600	410 1610	4.00	ND	10.4	1.8d	3.2c	± 7.5b	± 8.5a
L_0	Syringareshior	7.07	C22H2008	410.1020	418.1010	-4.25	ND	10.4 ± 1.1	$13.3 \pm 0.7c$	$23.2 \pm 1.1a$	$16.5 \pm 1.8h$	20.7 ± 1 0ab
L 7	Secoisolariciresinol	8.64	C20H26O6	362.1729	362.1701	-7.78	$69.2 \pm$	66.8 ±	69.6 ±	$72.5 \pm$	69.9 ±	73.4 ±
-							2.3b	1.8c	3.1b	2.0ab	2.4b	3.3a
L_8	Secoisolariciresinol-	8.98	C30H38O10	558.2465	558.2505	7.21	11.5 \pm	10.8 \pm	$\textbf{9.8} \pm$	8.3 \pm	10.4 \pm	$\textbf{9.8}~\pm$
	sesquilignan						0.6a	0.4ab	0.7b	0.2b	1.1ab	0.5b
L_9	Pinoresinol	9.20	C20H22O6	358.1416	358.1395	-6.02	13.3 ±	9.9 ±	ND	15.9 ±	$10.2 \pm$	8.4 ±
I 10	Icoloriairocinol	0 52	C2042406	260 1572	260 1 5 2 9	0.69	0.7D	0.3C	256	0.7a	0.6C	0.3d
L_10	Isolaricitesiiloi	9.55	020112400	300.1373	500.1558	-9.00	ND	47.3⊥ 0.8a	1.8b	ND	1.0b	ND
L_11	Lariciresinol*	9.94	C20H24O6	360.1573	360.1543	-8.28	41.0 \pm	50.7 \pm	ND	ND	ND	ND
-							1.2b	2.1a				
L_12	Matairesinol*	10.37	C20H22O6	358.1416	358.1428	3.13	17.4 \pm	16.0 \pm	17.6 \pm	$18.2~\pm$	14.2 \pm	$17.2~\pm$
							1.4a	1.4ab	0.7a	1.0a	0.1b	1.4a
Phytost	erols	15.05	C2011400	400 2705	400 2667	0.64	01.1	100.0	120.4	104.1	00 5	01.0
P_1	p-Campesterol*	15.25	C28H48U	400.3705	400.3667	-9.64	$91.1 \pm 3.0c$	108.9 - 4.6b	130.4 ± 0.95	104.1 - 5.8b	99.5 ±	$91.9 \pm 2.7c$
P 2	Campesterol hexoside	22.53	C34H58O6	562.4233	562.4211	-3.95	ND	\pm 4.00 70.0 \pm	1 0.9a ND	1 3.60 ND	57.0 ±	ND
	r · · · · · · · · · · · · · · · · · · ·							3.6a			6.1b	
P_3	Stigmasterol hexoside	22.58	C35H58O6	574.4233	574.4228	-0.99	162.5	$20.5~\pm$	175.1	$64.2 \pm$	155.0	153.7
							\pm 5.8a	0.7d	\pm 4.0a	3.0c	\pm 4.9b	\pm 3.6b
P_4	Brassicasterol hexoside	23.86	C34H56O6	560.4077	560.4061	-2.80	97.7 ±	113.0	96.1 ±	110.1	104.0	84.4 ±
D 5	Situatoral heroside	25.04	C35H6006	576 4300	576 4340	7 1 1	U.6D	± 12.9a 17 2 ⊥	5.9D	± 3.6a 21.1 ⊥	\pm 7.2ab	6.1C
1_3	SHOSICIOI IICAUSIUC	23.04	33310000	370.7390	370.4349	-/.11	0.7d	0.5c	ND	0.8a	23.3 ⊥ 0.7b	ND

Data are expressed as mean values \pm standard deviation of three replicates. Data are expressed as arbitrary units (AU). Different letters indicate significant (p < 0.05) differences among germination conditions by Tukey's test. ND: Not detected. Identification confirmed by comparison with commercial standard.

and 40 % RH. Accordingly, in this study, we found a 97–100 % of germination percentage when relative humidity was set at 60–65 %, indicating that this humidity is high enough to allow oat sprouting.

Regarding the effect of sprouting on nutrient composition, controversial results have been reported depending on the cereal and germination conditions. In this study, all germination conditions decreased the various fractions of dietary fiber. This result could be associated with the degradation of β -glucans, the primary dietary fiber component of oats, which is associated with an increased activity of endo- β -D-glucanase during sprouting, which depends on the hydration rate of the grains

(Lemmens et al., 2019). Similar results were reported by Koehler et al. (2007) in barley sprouted at low temperatures (15–20 °C); nevertheless, these authors reported that dietary fiber remained unchanged at higher sprouting temperatures (25 and 30 °C), contrary to what was observed in this study. These differences could be attributed to the different metabolic rates in each cereal.

On the other hand, the enzymatic activity of endogenous peptidase has been found to increase after one day of cereal germination, which is essential for adequate seedling development. Nevertheless, although sprouting leads to protein hydrolysis, slight modifications can be

Food Chemistry 439 (2024) 138173

Fig. 2. Coefficient plot extracted from PLS-DA analysis for oat grain (A), oat sprout 20 °C/55 % RH (B), oat sprout 20 °C/65 % RH (C), oat sprout 25 °C/60 % RH (D), oat sprout 30 °C/55 % RH (E), and oat sprout 30 °C/65 % RH (F).

observed in total protein content (Lemmens et al., 2019). In this study, we found that all germination conditions promoted a slight increase in protein content; similar results were observed by Klose and Arendt (2012), which were associated with the degradation and solubilization of storage proteins.

Oat grains are rich in several phytochemicals, including phenolic derivatives, like phenolic acids, flavonoids, avenanthramides, lignans, and phytosterols (Schendel, 2019). In this study, we provide an exhaustive phytochemical characterization of oat sprouted at different conditions combined with chemometrics analyses to understand this phenomenon better. The increased polyphenol content in oat sprouts is linked to the activation of secondary metabolism. This activation occurs due to the generation of oxidative stress during the soaking process (rehydration) of grains, which subsequently leads to the synthesis of antioxidants such as polyphenols. The enzyme phenylalanine ammonia lyase (PAL) plays a key role in this process, as it is one of the key enzymes involved in regultating the phenylpropanoid pathway responsible for polyphenol and lignan synthesis (Benincasa et al., 2019).

In this study, kaempferol rhamnosyl hexoside rhamnoside was the phytochemical found at high concentrations in oat grain and sprouts as compared to the other polyphenols identified in this study. This flavonoid has been identified as one of the contributors of the high antioxidant capacity of papaya and palm fruit (Ma et al., 2019; Soib et al., 2020); however, its specific health beneficial potential has not been reported. Notably, this flavonoid and the flavone apigenin apiosyl hexoside were identified as the main phytochemicals responsible for the discrimination between oat grains and oat sprouted at different conditions in the PLS-DA model. Furthermore, apigenin and its derivatives have been identified in several grains, including oats as well as other food sources such as fruits and teas (Bucar et al., 2021). These compounds have shown potential pharmacological activities, including antioxidant properties. Moreover, preclinical studies have suggested their possible roles in ameliorating inflammation, diabetes, and cancer (Salehi et al., 2019); however, these effects have not been demonstrated in clinical trials.

Studies have yet to be carried out to evaluate the impact of temperature and relative humidity on the polyphenol composition of oat sprouts. For instance, Ding et al. (2019) evaluated the effect of germination time on oat total phenolic content, determining that it was increased up to 3.2 times after 96 h of germination at 24 °C and 95 % RH as compared to non-germinated oat grains. Jiménez-Pulido et al. (2022) sprouted oat grains at 21 °C and 95 % RH for five days, finding a 2.4-fold increase in total phenolic content as compared to oat grains. Moreover, these authors identified four phenolic acids and flavonoids in oat grains; three were lost during sprouting, and only sinapic acid glucoside was increased (1.6-fold). Conversely, these authors observed that sprouting affected the avenanthramide profile since only avenanthramide 2f (B) was identified in oat grains at a very low concentration, which was further increased by 83.7-fold in oat sprouts. In contrast, avenanthramides 2c (C) and 2p (A) were identified only in oat sprouts.

Conversely, Feng et al. (2022) identified these three avenanthramides in oat grains, which were significantly increased after the first day of germination (9.0–20.9-fold) at 20 °C and 80 % RH. Similarly, we identified eight avenanthramides in oat grains; however, some avenanthramides were decreased, and others were augmented depending on the germination conditions. Skoglund et al. (2008) reported that changes in the avenanthramide profile during germination are influced by multiple simultaneous biological processes, including an increased the *de novo* synthesis and activity of the hydroxycinnam hydroxycinnamoyl-CoA:hydroxyanthranilate N-hydroxycinnamoyl transferase (HHT). Additionally, there is an enhanced production or release of phenolic acids such as coumaric, caffeic, and ferulic acids, that are utilized for the synthesis of derivatives, including avenanthramides. Moreover, these authorss demonstrated that both soaking and germination time were the main factors affecting HHT activity, whereas a slight effect was found with germination temperature. Accordingly, avenanthramides were not identified as critical discriminant factors in our PLS-DA model.

Lignans such as lariciresinol, pinoresinol, and hydroxymatairesinol have been reported in oat grains (Bleidere et al., 2022). This group of phenolic compounds have been associated with various potential health benefits, including their antioxidant properties and their possible role in mitigating chronic metabolic diseases. Interestingly, some studies on other grains, like flaxseed sprouts, suggest that lignan biosynthesisrelated enzymes, such as dirigent-protein oxidase (DPO) and pinoresinol-lariciresinol reductase (PLR) are activated during germination, possibly contributing to the antioxidant defenses alongside other polyphenols (Wang et al., 2016). Accordingly, we identified five lignans synthesized during oat germination (medioresinol, hydroxymatairesinol, acetoxypinoresinol, syringaresinol, and isolariciresinol), which were further increased under 30 °C and 65 % RH and 30 °C and 55 RH. Although the specific impact of germination on oat lignan composition remains less explored, these findings suggest that germination conditions can influence lignan levels, potentially contributing to antioxidant defenses alongside other polyphenols.

On the other hand, in this study, we identified stigmasterol hexoside as the major phytosterol of the oat grain, whereas beta-sitosterol has been identified as the principal sterol in oat by other authors (Kaukovirta-Norja et al., 2004). Most phytosterols were augmented during germination, including the *de novo* synthesis of campesterol hexoside. Accordingly, it has been reported an increase of up to 1.2-fold of this phytosterol during oat sprouting (Kaukovirta-Norja et al., 2004). Even though phytosterols exert antioxidant capacity, these phytochemicals are not synthesized for this purpose. Phytosterols are critical components for regulating the structure and activity of cell membranes; since they participate in cellular differentiation and proliferation, these compounds are synthesized during the early stages of germination, but this synthesis gradually decreases as the plant matures (Piironen et al., 2000).

5. Conclusions

Temperature and relative humidity influence the phytochemical profile and the growth rate during oat germination; nevertheless, it is essential to recognize that the combination of both environmental parameters collectively determine the outcome since each set of germination conditions yield a unique composition of nutrients, secondary metabolites at a distinct growth rate. Moreover, it is noteworthy that the germination condition that provided the best germination characteristics did not produce the best phytochemical composition. Therefore, germination conditions must be selected depending on the oat sprouts' expected characteristics and nutraceutical potential. By considering germination conditions, end-users can harness the versatility of oat sprouting to meet their specific needs and maximize the potential benefits of this promising cereal crop. For instance, the manufacturers of functional food and beverage could consider using sprouts from conditions that yield high polyphenol content for products targeting antioxidant benefits, whereas nutraceutical manufacturers could focus on sprouting conditions that result in elevated levels of avenanthramides, well-known for their health-promoting properties.

CRediT authorship contribution statement

Marely G. Figueroa-Pérez: Formal analysis, Writing – original draft. Rosalía Reynoso-Camacho: Supervision, Writing – review & editing. Minerva Ramos-Gómez: Conceptualization, Resources, Supervision, Writing – review & editing. Magdalena Mendoza-Sánchez: Formal analysis, Investigation, Writing – review & editing. Iza F. Pérez-Ramírez: Formal analysis, Resources, Supervision, Writing – original draft.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This research received no specific grant from funding agencies in the public, commercial, or non-profit sectors. We thank the Campo Experimental Bajío-Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (CEBAJ-INIFAP, Celaya, Guanajuato, México) for the donation of the oat grains used in this study. In addition, we thank the Chemistry School of the Universidad Autónoma de Querétaro for providing facilities for the UPLC-ESI-Q-ToF MS analysis (CONACyT project number: INFR-15-255182).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.foodchem.2023.138173.

References

- Benincasa, P., Falcinelli, B., Lutts, S., Stagnari, F., & Galieni, A. (2019). Sprouted grains: A comprehensive review. Nutrients, 11, 421. https://doi.org/10.3390/nu11020421
- Bleidere, M., Zute, S., Gailāne, N., Kantāne, I., Jākobsone, I., & Bartkevičs, V. (2022). Lignans in oat and barley grains depending on genotype and farming practice. *Proceedings of the Latvian Academy of Sciences*, 76, 124–130. https://doi.org/ 10.2478/prolas-2022-0019
- Bucar, F., Xiao, J., & Ochensberger, S. (2021). Flavonoid C-glycosides in diets. In J. Xiao, S. D. Sarker, & Y. Asakawa (Eds.), *Handbook of Dietary Phytochemicals* (pp. 117–153). New York, NY, USA: Springer Publishing.
- Damazo-Lima, M., Rosas-Pérez, G., Reynoso-Camacho, R., Pérez-Ramírez, I. F., Rocha-Guzmán, N. E., de Los Ríos, E. A., & Ramos-Gomez, M. (2020). Chemopreventive effect of the germinated oat and its phenolic-AVA extract in azoxymethane/dextran sulfate sodium (AOM/DSS) model of colon carcinogenesis in mice. *Foods*, 9, 169. https://doi.org/10.3390/foods9020169
- Ding, J., Johnson, J., Chu, Y. F., & Feng, H. (2019). Enhancement of γ-aminobutyric acid, avenanthramides, and other health-promoting metabolites in germinating oats (Avena sativa L.) treated with and without power ultrasound. Food Chemistry, 283, 239–247. https://doi.org/10.1016/j.foodchem.2018.12.136
- El-Mouhamady, A. A., Elewa, T. A., & Aboud, K. A. (2014). Study the genetic mode of action responsible for germination seeds of oats (*Avena sativa*) under low and high levels of temperatures. *Current Science International*, *3*, 341–351.
- Feng, Y., Suo, D., Guan, X., Wang, S., Xiao, Z., Li, Y., ... Fan, X. (2022). Effect of germination on the avenanthramide content of oats and their *in vitro* antisensitivity activities. *Molecules*, 27, 6167. https://doi.org/10.3390/molecules27196167
- Godínez-Mendoza, P. L., Rico-Chávez, A. K., Ferrusquía-Jiménez, N. I., Carbajal-Valenzuela, I. A., Villagómez-Aranda, A. L., Torres-Pacheco, I., & Guevara-González, R. G. (2023). Plant hormesis: Revising the concepts of biostimulation, elicitation, and their application in a sustainable agricultural production. *Science of Total Environment*, 894, Article 164833. https://doi.org/10.1016/j. scitoteny.2023.164883
- Gramza-Michałowska, A., Kmiecik, D., Kobus-Cisowska, J., Żywica, A., Dziedzic, K., & Brzozowska, A. (2018). Phytonutrients in oat (Avena sativa L.) drink: Effect of plant extract on antiradical capacity, nutritional value and sensory characteristics. Polish Journal of Food and Nutrition Sciences, 68, 63–71. https://doi.org/10.1515/pjfns-2017-0009
- Hahm, T.-S., Park, S.-J., & Martin Lo, Y. (2009). Effects of germination on chemical composition and functional properties of sesame (Sesamum indicum L.) seeds. *Bioresource Technology*, 100, 1643–1647. https://doi.org/10.1016/j. biortech.2008.09.034
- Horwitz, W. (2010). Official methods of analysis of AOAC International. Rockville, MA, USA: AOAC International.
- Jiménez-Pulido, I. J., Rico, D., Martinez-Villaluenga, C., Pérez-Jiménez, J., Luis, D. D., & Martín-Diana, A. B. (2022). Sprouting and hydrolysis as biotechnological tools for

M.G. Figueroa-Pérez et al.

the development of nutraceutical ingredients from oat grain and hull. *Foods, 11*, 2769. https://doi.org/10.3390/foods11182769

- Kaukovirta-Norja, A., Wilhelmson, A., & Poutanen, K. (2004). Germination: A means to improve the functionality of oat. Agricultural and Food Science, 13, 100–112. https:// doi.org/10.2137/1239099041838049
- Klose, C., & Arendt, E. K. (2012). Proteins in oats; their synthesis and changes during germination: A review. Critical Reviews in Food Science and Nutrition, 52, 629–639. https://doi.org/10.1080/10408398.2010.504902
- Koehler, P., Hartmann, G., Wieser, H., & Rychlik, M. (2007). Changes of folates, dietary fiber, and proteins in wheat as affected by germination. *Journal of Agricultural and Food Chemistry*, 55, 4678–4683. https://doi.org/10.1021/jf0633037
- Latta, M., & Eskin, M. (1980). A simple and rapid colorimetric method for phytate determination. Journal of Agricultural and Food Chemistry, 28, 1313–1315. https:// doi.org/10.1021/jf60232a049
- Lemmens, E., Moroni, A. V., Pagand, J., Heirbaut, P., Ritala, A., Karlen, Y., ... Delcour, J. A. (2019). Impact of cereal seed sprouting on its nutritional and technological properties: A critical review. *Comprehensive Reviews in Food Science and Food Safety*, 18, 305–328. https://doi.org/10.1111/1541-4337.12414
- Limwiwattana, D., Tongkhao, K., & Na Jom, K. (2016). Effect of sprouting temperature and air relative humidity on metabolic profiles of sprouting black gram (Vigna mungo L.). Journal of Food Processing and Preservation, 40, 306–315. https://doi.org/ 10.1111/jfpp.12608
- Ma, C., Dunshea, F. R., & Suleria, H. A. R. (2019). LC-ESI-QTOF/MS characterization of phenolic compounds in palm fruits (jelly and fishtail palm) and their potential antioxidant activities. *Antioxidants, 8*, 483. https://doi.org/10.3390/antiox8100483
- Maraghni, M., Gorai, M., & Neffati, M. (2010). Seed germination at different temperatures and water stress levels, and seedling emergence from different depths of Ziziphus lotus. South African Journal of Botany, 76, 453–459. https://doi.org/ 10.1016/j.sajb.2010.02.092
- Mendoza-Sánchez, M., Pérez-Ramírez, I. F., Wall-Medrano, A., Martinez-Gonzalez, A. I., Gallegos-Corona, M. A., & Reynoso-Camacho, R. (2019). Chemically induced common bean (Phaseolus vulgaris L.) sprouts ameliorate dyslipidemia by lipid intestinal absorption inhibition. *Journal of Functional Foods*, 52, 54–62. https://doi. org/10.1016/j.jff.2018.10.032
- Noblet, A., Leymarie, J., & Bailly, C. (2017). Chilling temperature remodels phospholipidome of Zea mays seeds during imbibition. Scientific Reports, 7, 8886. https://doi.org/10.1038/s41598-017-08904-z
- de Oliveira, A. K. M., Ribeiro, J. W. F., Pereira, K. C. L., & Silva, C. A. A. (2013). Effects of temperature on the germination of Diptychandra aurantiaca (Fabaceae) seeds. Acta Scientiarum Agronomy, 35, 203–208. https://doi.org/10.4025/actasciagron. v35j2.15977

- Piironen, V., Lindsay, D. G., Miettinen, T. A., Toivo, J., & Lampi, A. M. (2000). Plant sterols: Biosynthesis, biological function and their importance to human nutrition. *Journal of the Science of Food and Agriculture*, 80, 939–966. https://doi.org/10.1002/ (SICI)1097-0010(20000515)80:7<939::AID-JSFA644>3.0.CO:2-C
- Reynoso-Camacho, R., Rodríguez-Villanueva, L. D., Sotelo-González, A. M., Ramos-Gómez, M., & Pérez-Ramírez, I. F. (2021). Citrus decoction by-product represents a rich source of carotenoid, phytosterol, extractable and non-extractable polyphenols. *Food Chemistry*, 350, Article 129239. https://doi.org/10.1016/j. foodchem.2021.129239
- Rodríguez-González, S., Pérez-Ramírez, I. F., Castaño-Tostado, E., Amaya-Llano, S., Rodríguez-García, M. E., & Reynoso-Camacho, R. (2018). Improvement of physicochemical properties and phenolic compounds bioavailability by concentrating dietary fiber of peach (Prunus persica) juice by-product. *Journal of the Science of Food* and Agriculture, 98, 3109–3118. https://doi.org/10.1002/jsfa.8812
- Salehi, B., Venditti, A., Sharifi-Rad, M., Kregiel, D., Sharifi-Rad, J., Durazzo, A., ... Martins, N. (2019). The therapeutic potential of apigenin. *International Journal of Molecular Sciences*, 20, 1305. https://doi.org/10.3390/ijms20061305
- Schendel, R. R. (2019). Phenol content in sprouted grains. In H. Feng, B. Nemzer, & J. W. DeVries (Eds.), Sprouted Grains: Nutritional Value, Production and Applications (pp. 247–315). Cambridge, UK: Woodhead Publishing/AACC International Press.
- Singh, A. K., Rehal, J., Kaur, A., & Jyot, G. (2015). Enhancement of attributes of cereals by germination and fermentation: A review. *Critical Reviews in Food Science and Nutrition*, 55, 1575–1589. https://doi.org/10.1080/10408398.2012.706661
- Skoglund, M., Peterson, D. M., Andersson, R., Nilsson, J., & Dimberg, L. H. (2008). Avenanthramide content and related enzyme activities in oats as affected by steeping and germination. *Journal of Cereal Science*, 48, 294–303. https://doi.org/10.1016/j. jcs.2007.09.010
- Soib, H. H., Ismail, H. F., Husin, F., Abu Bakar, M. H., Yaakob, H., & Sarmidi, M. R. (2020). Bioassay-guided different extraction techniques of Carica papaya (Linn.) leaves on in vitro wound-healing activities. *Molecules*, 25, 517. https://doi.org/ 10.3390/molecules25030517
- Świeca, M., Surdyka, M., Gawlik-Dziki, U., Złotek, U., & Baraniak, B. (2014). Antioxidant potential of fresh and stored lentil sprouts affected by elicitation with temperature stresses. *International Journal of Food Science & Technology*, 49, 1811–1817. https:// doi.org/10.1111/jifs.12489
- Wang, H., Wang, J., Guo, X., Brennan, C. S., Li, T., Fu, X., ... Liu, R. H. (2016). Effect of germination on lignan biosynthesis, and antioxidant and antiproliferative activities in flaxseed (Linum usitatissimum L.). *Food Chemistry*, 205, 170–177. https://doi.org/ 10.1016/j.foodchem.2016.03.001