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Abstract
Selenium (Se) is an essential micronutrient with several functions in cellular and molecular anticancer processes. There is 
evidence that Se depending on its chemical form and the dosage use could act as a modulator in some anticancer mechanisms. 
However, the metabolism of organic and inorganic forms of dietary selenium converges on the main pathways. Different 
selenocompounds have been reported to have crucial roles as chemopreventive agents, such as antioxidant activity, activa-
tion of apoptotic pathways, selective cytotoxicity, antiangiogenic effect, and cell cycle modulation. Nowadays, great interest 
has arisen to find therapies that could enhance the antitumor effects of different Se sources. Herein, different studies are 
reported related to the effects of combinatorial therapies, where Se is used in combination with proteins, polysaccharides, 
chemotherapeutic agents or as nanoparticles. Another important factor is the presence of single nucleotide polymorphisms in 
genes related to Se metabolism or selenoprotein synthesis which could prevent cancer. These studies and mechanisms show 
promising results in cancer therapies. This review aims to compile studies that have demonstrated the anticancer effects of 
Se at molecular levels and its potential to be used as chemopreventive and in cancer treatment.

Keywords  Selenocompounds · Selenium metabolism · Anti-cancer mechanisms · Combinatorial therapies · Selenium-
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Introduction

Cancer is one of the most common causes of death world-
wide. It has been estimated that every year, almost 20 mil-
lion cases are reported, with approximately a 60% of mor-
tality [1]. Among the diverse cancer treatments, the most 
common are the ones based on radiotherapy and chemo-
therapy [2, 3]. However, chemotherapeutics such as tegafur 
uracil (UFT), tegafur gimeracil oteracil potassium (S-1), 
5-fluorouracil (5-FU), 5-FU + levofolinate calcium (l-LV), 
capecitabine (Cape), irinotecan hydrochloride hydrate (IRI), 
UFT + calcium folinate (LV), oxaliplatin (OX), and triflu-
ridine/tipiracil hydrochloride (FTD/TPI) have shown to be 
highly cytotoxic, targeting both healthy and tumoral cells. 
These therapies lead to adverse or side effects such as nau-
sea, diarrhea, headaches, alopecia, and liver damage [4, 5]. 
For that reason, the search for novel treatments with low or 
null cytotoxicity is of critical importance.

Se is an essential multifunctional micronutrient for 
humans that plays a crucial role as antioxidant through 
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several enzymatic mechanisms of some: glutathione per-
oxidase (GPX), thioredoxin reductase (TXNRD), and iodo-
thyronine deiodinases (DIO). Optimal concentrations of Se 
(~ 55 μg/day) are crucial for the regulation of the inflam-
mation process, antioxidant response, thyroid hormones, 
immune system, and fertility control [6]. Se deficiency 
(< 20 µg/day) can lead to several pathologies such as muscle 
weakness and inflammation, fragile red blood cells, irregular 
skin coloration, heart muscle dysfunction, susceptibility to 
cancer, Kashin-Beck, and Keshan diseases. Supplementa-
tion with supra-nutritional levels (> 100 µg/day) of Se might 
decrease the risk of different sorts of cancers [7, 8]. In fact, 
Se received a qualified health claim in 2013 from the FDA 
that declares that Se reduces the risk of site-specific cancers. 
On the other hand, toxic concentrations (> 350 µg/day) can 
generate liver and kidney injury, blood clotting, heart and 
liver necrosis, hair and nail loss, nausea, and vomiting [9].

There is evidence that supplementation of hydrogen 
selenide (H2Se), methylselenol (CH3SeH), selenodygluta-
tion (GSSeSG), selenomethionine (SeMet), selenocysteine 
(Sec), Se-methylselenocysteine (SeMSC), and methylselen-
inic acid (MSeA) might decrease the risk of cancers [10–15]. 
Although several scientific investigations have studied the 
effects of selenocompounds as modulators, which means that 
these substances could stimulate or suppress the endogenous 
systems to help mechanisms that counteract cancer, it is not 
well understood how these compounds interact with other 
molecules and cellular components.

The chemopreventive effects of selenocompounds have 
been related to different molecular mechanisms, which can 
act simultaneously: antioxidant modulation [11, 15–18], 
selective cytotoxicity [19, 20], cell cycle arrest [21], activa-
tion of both intrinsic and extrinsic apoptotic pathways [22, 
23], and reduced angiogenesis [12, 22, 24, 25]. Also, seleno-
compounds have demonstrated several anticancer outcomes 
in combination with chemotherapeutic agents and natural 
compounds. Specific pathways to an understanding of the 
interaction between Se with cellular and molecular factors 
in cancer development are proposed.

This work focuses on the study of the main metabolic 
pathways of the selenocompounds, their dietary sources, and 
anti-cancer molecular mechanisms. In addition, the effects of 
the combination of natural or chemotherapeutic compounds 
with Se on cancer are also described. Finally, current novel 
applications, such as the likely interplay of Se and gut micro-
biota and its relevance, are also discussed.

Selenocompounds and Their Sources

Selenocompound refers to any molecule that includes 
this mineral in its structure, commonly acting as a sul-
fur analog. Inorganic forms include elemental Se, H2Se, 

sodium selenate (Na2SeO4), sodium selenite (Na2SeO3), 
selenide (Se−2), diselenides (Se2

−2), and selenocy-
anate (SeCN-). Organic forms include selenoesters (Se-
(C = O)-OH), ethaselen ((1,2-[bis(1,2-benzisoselena-
zolone-3(2H)-ketone)]-ethane (1,2-BBSKE), methyl 
selenium (CH3Se−), Se-aromatic containing molecules, 
and selenoamino acids like SeMSC, Sec, SeMet, selenoid 
glutathione (SDG), and MSeA [26, 27]. Also, Se can be 
found in the structure of selenoproteins like GPX1, GPX2, 
GPX3, GPX4, and GPX6; TXNRD1, TXNRD2, TXNRD3; 
DIO1, DIO2, DIO3; and selenoproteins H, I, K, M, N, O, 
P, R, S, T, V, and W [28, 29].

Humans can assimilate Se in both inorganic and 
organic molecules. However, Se assimilation is more 
efficient in the form of organic Se from various food 
sources, such as meat, seafood, kernels, and yeasts [30]. 
The chief natural Se food sources include Brazil nuts, 
chicken eggs, cow milk, red meats, and seafood [31–35] 
(Table  1). Other sources include Se-enriched foods, 
which have been purposely fortified in order to coun-
teract dietary Se deficiency mainly due to the low bio-
availability in agriculture soils [36]. Hence, the search 
for novel Se-enriched foods has been identified as an 
issue of interest [37]. This fortification relies on the Se 
absorption, accumulation, and biotransformation mecha-
nisms, which depend mainly on genetics and plant spe-
cies or organisms [38]. Se-biofortified Brassica oleracea 
L. var. gongylodes [39], spirulina [29], and yeast [37, 
40] have been developed to meet the daily requirements 
of the population [29, 31, 37]. Lately, Se biofortifica-
tion of crops like chickpea [41–43], rice [44], soybean 
[33], wheat [45], mushrooms (Pleurotus ostreatus) [46], 
and coffee [47] have been pointed out as novel ways 
of obtaining new sources of dietary Se. Recently, some 
processed foods such as yeast-leavened breads [48] have 
been produced to increase their Se content and antioxi-
dant properties. The crop fertilization, the enrichment of 
flours at the end of the milling process, and the addition 
of Se to formulations have also come up as attractive 
and effective strategies to increase the dietary Se intake 
especially for Se-deficient populations such as China, 
New Zealand, Ukraine, Russia, Finland, and the USA 
[49, 50].

Se Absorption, Distribution, Metabolism, 
and Excretion Process

The nutritional availability of Se is highly dependent on its 
chemical form that affects its absorption, distribution, metab-
olism, and excretion (ADME) process rates (Fig. 1) [55].
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Absorption

Among the most important factors that affect the transport 
of Se species into the enterocytes are the presence of other 
Se species, the chemical structure, and the Se doses [56]. 
In this regard, inorganic forms, such as selenate (SeO2−

4) 
and selenite (SeO2−

3), are transported through paracellular 
and transcellular pathways, respectively. On the other hand, 
organic Se, such as Sec, SeMet, and SeMSC, are transported 
by transcellular pathways [57]. Leblondel et al. [58] sug-
gested that SeMet shares a common absorption transport 
mechanism with its chemical analog, methionine (Met), 
while Sec and cysteine show different mechanisms. Nickel 
et al. [59] suggested the B0 system as the dominant transport 
of other selenoamino acids.

Human studies indicate differences in the absorption of 
inorganic and organic forms of selenocompounds. Jäger 
et al. [60] and Jäger et al. [61] demonstrated in two different 
studies that after 2–3 h of oral administration of Na2SeO4 
(50  µg Se), Na2SeO3 (200  µg Se), and selenized yeast 
(100 µg Se), the Se plasma concentration changed from 82.5 
to 85.1 μg Se/L, 84.5 to 97.4 μg Se/L, and 89.5 to 92.1 μg 
Se/L, respectively. Even though the initial supplementation 
doses were different for each selenocompound, it was shown 

that Na2SeO3 was absorbed faster than Na2SeO4 and sele-
nized yeast. Another study carried out by Di Dato et al. [62] 
with thirty healthy volunteers who were supplemented with 
SeMet (166 µg) for 14 days showed an accumulation of Se 
in serum. There was an increase of 32% of Se in serum con-
cerning baseline values from 80 to 102 µg/L after 14 days. 
Thus, these results showed that prolonged SeMet intake of 
166 µg/day could increase blood levels reaching normal cir-
culating Se values [62].

Distribution

Once absorbed by the enterocytes, Se can follow three dif-
ferent routes: liver, lymphatic system, or plasma [63]. In 
plasma, Se is associated with plasma proteins and eventually 
is taken by the liver or by kidneys to be excreted [63]. In the 
liver, Se is used to synthesize selenoproteins, especially sele-
noprotein P (SELENOP). The main function of SELENOP 
is the transport of Se to the peripheral tissues. When SELE-
NOP reaches the target tissues, it is degraded to obtain Sec 
and to be part of other selenocompounds [64, 65]. Regarding 
the lymphatic system, Se can travel into plasma or be taken 
up by the liver [63].

Table 1   Natural and enriched 
Se food sources

Source of Se Total Se concentration Reference Serving size Se per serving 
size (µg)

Reference

Natural foods
Brazil nut  ~ 60 μg/g [31] 28 g 1470–1680 [51]
Red meat (raw) 100–250 μg/g [32] 65–85 g 6500–8500 [32]
Seafood 120–770 μg/g [33] 35 g 4200 [52]
Cow milk  ~ 0.008 μg/mL [34] 240 mL 1.92 [34]
Chicken eggs  ~ 0.02–0.04 μg/g [35] 50 g 1.2–1.5 [35]
Enriched foods
Yeast
Se-enriched yeast 0.01 μg/g [32, 37, 40] 20 g 0.2 [37]
Mushrooms
Pleurotus ostreatus 25.9 μg/g [46] 70 g 1800 [46]
Vegetables
Brassica oleraceae  > 0.0285 μg/g [39] 150 g 4.2 [39]
Microalgae
Spirulina 20 μg /mL [29] 3 g 60 [29]
Kernels
Chickpea 6.93 µg/g [41–43] 120 g 830 [41]
Rice 0.337–0.533 μg/g [44] 240 g 120 [53]
Soybean 2 μg/g [38] 120 g 240 [38]
Wheat 0.27 μg/g [45] 150 g 40 [45]
Coffee 1.86 μg/g [47] 20 g 35 [47]
Enriched processed foods
Bread 1.12 μg/g [48] 28 g 32 [48]
Tortilla 0.651 μg/g [54] 112.5 g 73.23 [54]
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Akahoshi et al. [66] reported the presence of Se in the 
brain, heart, liver, lung, kidney, pancreas, spleen, and testis 
of mice fed during 6 weeks with high amounts of SeMet 
(20 mg SeMet or 8.053 mg Se/kg diet). The organ with the 
highest content of Se was the liver (11 μg Se/g tissue) fol-
lowed by the kidneys (7 μg Se/g tissue). Besides, the Se 
content of all organs was increased in a time-dependent man-
ner [66].

Metabolism

Humans can retain selenoamino acids more efficiently than 
inorganic Se forms [67]. Thus, SeMet can be incorporated 
into proteins, or it can be metabolized to selenocompounds 
as H2Se, an intermediary for selenoprotein production. H2Se 
from SeMet can be generated by two reactions, one by a 
trans-sulfuration pathway to form Sec which is catabolized 
by Sec lyase [64, 68] or by CH3SeH through the ү-lyase fol-
lowed by demethylation reaction [69]. On the other hand, 

inorganic Se cannot be a part of building proteins. SeO2−
3 

or SeO−2
4 are reduced to form H2Se via thioredoxin (Trx) or 

glutaredoxin (Grx) systems [70] to generate selenoproteins 
or to be excreted. Once H2Se is generated; selenoproteins 
can be synthesized after the activation of selenophosphate 
(HSePO3)−2 [49].

Takahashi et al. [71] reported the presence of a selenome-
tabolite in bile after the supplementation of Na2SeO3, potas-
sium selenocyanate (KSeCN), and SeMet in rats. The bile of 
Wistar rats was collected after 10 min of being injected with 
0.2 mL of 50 mg Se/mL from Na2SeO3, SeCN, or SeMet. 
These selenocompounds were metabolized into selenodi-
glutathione (GSSeSG), as a common biliary selenometabo-
lite. GSSeSG appeared after 10 min of Na2SeO3 and SeCN 
administration, while in treatments with SeMet, GSSeSG, 
it was detectable 20 min after administration. GSSeSG was 
synthesized from H2Se which was formed through the inges-
tion of Na2SeO3, SeCN, and SeMet. GSSeSG in bile could 
be re-metabolized and eventually excreted (Fig. 1) [71].

Fig. 1   ADME process of selenocompounds. Selenocompounds such 
as SeO2-3, SeO2-4, Sec, and SeMet are absorbed via the intestinal 
lumen, where they go directly to the blood vessels, which later are 
metabolized by the liver. Briefly, SeMet is generally converted to 

proteins and Sec, which can also be metabolized as selenoproteins. 
SeO2-4 is transformed into SeO2-3 with a later conversion to H2Se 
which can be excreted via breath as dimethyl selenide or via kidney 
as selenosugars, SeO2-4, and TMSe
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Excretion

To avoid toxicity, the metabolized Se is subsequently 
excreted through urine, feces, and breath. The Se excretion 
depends on the chemical form and dosage and it could be 
found in urine as SeO−2

4, selenosugars, or as trimethylsele-
nonium ion (TMSe) [55, 72]. Kokarnig et al. [72] gave Se 
supplements to volunteers to evaluate total Se and seleno-
compound profiles in their urine. Five different selenocom-
pounds (SeO2−

4, SeO2−
3, selenized yeast, SeMet, SeMSC) 

were ingested in capsules containing 200 µg of Se, except for 
selenized yeast containing 165 µg of Se. After SeO2−

4 inges-
tion, the excreted Se was present as selenosugar 1 (SeSug 1) 
(14 ng Se mL−1), selenosugar 3 (SeSug 3) (3.2 ng Se mL−1), 
TMSe (0.13 ng Se mL−1), and as intact SeO2−

4 (0.67 ng 
Se mL−1). SeSug 1, SeSug 3, and TMSe were detected 
after SeO2−

3 ingestion at 8.5, 2.3, and 0.7 ng Se mL−1, 
respectively. The same compounds, SeSug 1, SeSug 3, and 
TMSe, were found in subjects who consumed the selenized 
yeast at concentrations of 2.4, 0.85, and 0.10 ng Se mL−1, 
respectively. In subjects supplemented with SeMet, SeSug 1 
(5.3 ng Se mL−1), SeSug 3 (2.4 ng Se mL−1), SeMet (0.31 ng 
Se mL−1), and TMSe (0.06 ng Se mL−1) were detected. On 
the other hand, in the SeMSC group, SeSug 1 (20 ng Se 
mL−1), SeSug 3 (1.4 ng Se mL−1), SeMSC (1.1 ng Se mL−1), 
and TMSe (0.07 ng Se mL−1) were found in the urine after 
24 h of ingestion. In all treatments, SeSug1 was the predomi-
nant excretion compound present in urine.

Similar results were reported by Takahashi et al. [55], 
who found that three selenocompounds, SeO−2

4, SeSug1, 
and TMSe, in the urine of male Wistar rats when rats were 
intravenously administered with SeO−2

4, SeO−2
3, SeMet, 

SeMSC, and selenocystine at doses of 2  μg or 10  μg 
Se/0.2 mL/rat for each compounds. SeSug1 was the pre-
dominant compound in the urine of all treatments. SeSug1 
and SeO−2

4 were detected in rats fed with the SeO−2
4 treat-

ment. In addition, the dose is an important factor in the 
excretion rate. Results showed that the highest doses of 
SeO−2

4 could not be metabolized and are excreted directly 
in the urine. Moreover, the levels of urinary SeSug1 origi-
nated from selenoamino acids were lower compared to 
those originating from SeO−2

4 and SeO−2
3 administration. 

These results could be related to the ability of the organ-
ism to retain selenoamino acids [55].

In other studies, the excretion levels of selenocom-
pounds were identified and quantified in urine. The results 
demonstrated that 31.1%, 16.9%, and 11.8% of the initial 
dose administered of Na2SeO4, Na2SeO3, and selenized 
yeast, respectively, were excreted. Moreover, SeO2−

4 was 
the main excreted metabolite after the administration of 
Na2SeO4 and SeSug1 of Na2SeO3 and selenized yeast 
administration [60, 61].

Cellular and Molecular Anticancer 
Mechanisms of Selenocompounds

Cancer evolves in three principal stages: precancerous, 
cancerous, and metastatic, with evidence demonstrating 
that selenocompunds act as modulators to counteract can-
cer in all phases [73]. Herein, this section will include a 
classification of anticancer molecular mechanisms on can-
cer models, as well as a relation among cellular, molecular, 
and genetic factors (Fig. 2).

Fig. 2   Anticancer mechanisms 
that are carried out by the sele-
nocompounds reviewed in this 
study. Antioxidant mechanism 
is colored in yellow, cytotoxic-
ity in purple, arrest of cell cycle 
in green, apoptosis in gray, and 
anti-angiogenesis in red
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Antioxidant Mechanisms

The oxidative stress due to high radical free content in the 
organism contributes to the risk of cancer in early stages. 
Se has one of the most significant key roles in the endog-
enous antioxidant defense mechanism. It is involved in the 
proper function of different enzymes and selenoproteins. 
Among the known 25 selenocysteine-containing proteins in 
humans, some of the most significant selenoproteins include 
TXNRD1, TXNRD2, and TXNRD3, GPX1, GPX2, GPX3, 
GPX4, and GPX6, DIO1, DIO2, and DIO3, which are 
needed to maintain cellular redox homeostasis [74]. These 
selenoproteins are an essential part of the intracellular redox 
system, reducing glutathione/oxidized glutathione (GSH/
GSSG), and reactive oxygen/nitrogen species (ROS/RNS), 
avoiding cell damage.

The family of Se-dependent peroxidases includes GPX1, 
GPX2, GPX3, GPX4, and GPX6, in humans. GPX1 pro-
tects cells from oxidative damage by reduction of hydro-
gen peroxide and other organic peroxide forms. The single 
nucleotide polymorphisms (SNPs) in GPX1 gene Pro198Leu 
(rs1050450) were shown to increase the risk of developing 
acute myeloid leukemia in a study conducted among the 
Romanian population [75]. The frequency of GPX1 gene 
(Pro198Leu) was higher in patients with acute myeloid 
leukemia compared to healthy subjects, 83.3%, and 57.2%, 
respectively. Furthermore, the SNPs in GPX1 gene were 
associated with a decrease in the antioxidant activity of the 
enzyme conferring an increased risk of cancer development. 
Choi et al. [76] demonstrated the effects of this polymor-
phism on the development of prostate cancer in two men’s 
groups (smokers and asbestos-exposed). Also, Erdem et al. 
[77] showed a protective effect of Pro198Leu (rs1050450) 
polymorphism against prostate cancer development. Other 
studies conducted on esophageal cancer cell lines EC109 
and EC9706 reported that high GPX1 enzymatic activity 
promoted the invasion and migration through enzyme matrix 
metalloproteinase-2 and urokinase-type plasminogen activa-
tor, which were key for tumor formation and metastasis [78].

In addition, colorectal cancer (CRC) cells were treated 
with cytokines and GPX2 enzymatic activity enhanced their 
anti-inflammatory mediators 15d-PGJ2 (15-deoxy-Δ12,14-
prostaglandin J2) and IL-22 (interleukin-22), suggesting 
that GPX2 plays a relevant role in inflammation [79]. The 
overproduction of GPX3 protein has been linked to decrease 
tumor growth and metastasis of cervical and prostate cancers 
[80, 81]. In addition, GPX3 protein was able to enhance the 
sensitivity of ovarian adenocarcinoma cells to cisplatin [82]. 
Jia et al. [83] developed a full analysis of the selenoproteome 
linked to diverse cancers, finding a higher expression of 
antioxidant enzymes. The most relevant results showed that 
the GPX3 gene was the most common and highly expressed 
in colon, esophagus, liver, lung, and stomach cancer cells. 

Results showed a notable increment in ROS activity dur-
ing the cancerous phase and, by that, promoting an acute 
antioxidant response. On the other hand, GPX4 gene expres-
sion that participates in the antioxidant protection of cell 
membrane lipids was overexpressed in liver cancer, resulting 
in an increase in tumor grade [84]. GPX4 gene expression 
acts as an oncogene and inhibits ferroptosis in cancer cells; 
therefore, the anticancer effect of cisplatin can be enhanced 
by GPX4 inhibition [85].

Some TXNRD proteins are key enzymes against cellu-
lar oxidative stress. In animal models, the inactivation of 
TXNRD1 gene increased liver cancer risks in mice treated 
with carcinogenic diethylnitrosamine [86]. Another study 
with immunocompromised mice xenografted with colon 
cancer cells and fed diets rich in Se showed an increase in 
TXNRD1 and GPX1 enzymatic activity, both being related 
to the antioxidant protection of lipids and a significant 
reduction of tumor growth [23]. The role of selenoproteins 
in carcinogenesis has been documented in several studies, 
which have shown that the regulatory mechanisms are highly 
ambiguous, requiring further analysis on a large scale [87].

Selective Cytotoxicity

Several studies have focused on the role of selenocompounds 
as chemotherapeutic agents, because of their potential to 
exert higher cytotoxicity in cancer cells compared to healthy 
cells. However, Se cytotoxic activity depends on several fac-
tors, such as the chemical structure of the selenocompound 
[88], cell culture medium [89], extracellular microenviron-
ment [90], cell line [88], presence of supplements such as 
amino acids in the medium [88], and treatment time [91].

The cytotoxicities of SeO2−
3 and selenosulfate (O3SSe−2) 

were evaluated on human hepatoma (HepG2), malignant 
melanoma (A375), and urinary bladder carcinoma cells 
(T24) [88]. The results demonstrated that in HepG2 cells, 
O3SSe−2 toxicity was higher than the exerted by SeO2−

3, 
while in A375 and T24 cells, an opposite effect was found 
at 24 h of exposure. For HepG2 cells, the IC50 values were 
13.8 μM for O3SSe−2 and > 15 μM for SeO2−

3 whereas for 
A375 cells were 6.6 μM for O3SSe−2 and 4.7 μM for SeO2−

3. 
On the other hand, the IC50 values for T24 cells were 6.9 μM 
for O3SSe−2 and 3.5 μM for SeO2−

3. These results showed 
that cytotoxicity effects could depend both on the chemical 
form of Se and the type of cells [88].

In addition, SeO2−
3 cytotoxicity was studied by Řezáčová 

et al. [91] in human bladder cancer cells (RT-112) with con-
centrations ranging from 0 to 100 µM SeO2−

3 at 24, 48, and 
72 h of incubation. The cytotoxic effect of SeO2−

3 at 24 h 
of exposure was detected with a concentration of 10 μM, 
while at 48–72 h, concentrations of 2.5 μM were the first to 
produce cytotoxic effects. Hence, lower doses were required 
to observe cytotoxic effects when the cells were incubated 
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for longer periods. Se cytotoxicity in this model was SeO2−
3 

dose-dependent. Cells treated with SeO2−
3 showed morpho-

logical changes such as massive vacuolization and product 
of mitochondrial damage. Bladder cancer cells treated with 
10 μM of SeO2−

3 had an expression of the phosphorylated 
histone H2A.X as a marker of DNA damage. Besides, high 
activity of Poly[ADP-ribose]polymerase 1 (PARP-1) and 
c-Jun N-terminal kinase (JNK) in cells treated with SeO2−

3 
was found. PARP-1, associated with DNA fragmentation 
and JNK along with mitochondrial dysfunction, has been 
related to necroptosis cell death. These effects could be 
associated with the increase of ROS in bladder cancer cells 
as a product of oxidative stress produced by the changes 
of the intracellular redox environment of SeO2−

3 [91]. The 
relationship between the excessive production of ROS by 
selenocompounds and cytotoxicity in cancer cells was also 
demonstrated by Wang et al. [90]. The presence of the anti-
oxidant NAC (N-acetyl-L-cysteine) at high doses (5 mM) 
inhibited significantly the selenite (Na2SeO3)-induced ROS 
production and cytotoxicity in human breast cancer cells, 
demonstrating the key role of the redox effects among the 
different mechanisms that may be involved [90].

The Se binding protein (SBP1), which acts as a covalent-
binding factor for Se, plays an essential role in protein deg-
radation, intracellular transport, cell differentiation, motility, 
and redox modulation [92]. It was found that SBP1 regulates 
the extracellular form of reduced GSH, enhancing Se uptake 
with marked cytotoxicity effects in cancer cells [90]. Human 
breast cancer cells (MCF-7) with downregulated SBP1 were 
treated with Na2SeO3 (7.5 μM) for 24 h to evaluate the cyto-
toxicity. The results showed a decrease of Se concentration 
in the culture medium after the first 4 h to levels of 3 μM 
Se which led to cell death. This effect could be attributed to 
the knockdown of SBP1 that could increase reduced GSH 
levels of the extracellular medium, which is important to 
transform Na2SeO3 to H2Se, an intermediate that can easily 
cross the cell membrane and is comparatively more toxic 
than Na2SeO3 [90].

On the other hand, Díaz [93] synthesized selenoesters to 
prove their cytotoxic and antiproliferative effects. Results 
showed that methyl selenoesters and Na2SeO3 directly 
affected histone modification, due to Se being implicated 
in oxygen and hypoxia conditions, and gene expression 
for migration and adhesion for malignant cells. Also, it 
downregulates the expression of human gene ITGB1, or 
β1-integrin (CD29), driving to low attraction to fibronectin 
and, by that, reducing the possibility of cancer diffusion.

Recently, nanoparticles have been studied because of their 
physical properties and their facility to embed molecules. 
Through the elaboration of nanoparticles, researchers have 
controlled drug release improving targeting and cellular bio-
availability, reducing toxicity, and even degradation of the 
drug delivery vehicle [94, 95]. Seleno-nanoparticles (SeNPs) 

had been shown to have higher pro-oxidant properties than 
selenite and hyperaccumulation in cancer cells with potent 
therapeutic effects [96]. An interesting approach for SeNPs 
is their interaction with the redox system in cells. Employing 
an in vivo model (male Kunming mice) with xenografted 
hepatocarcinoma cells (H22 cells), a redox-based dynamic 
interaction between SeNPs and TXNRD enzymatic activity, 
generated ROS [96]. This simple-step reaction improved the 
triggering of redox cycling with oxygen to generate ROS, 
resulting in a strong pro-oxidant effect combined with an 
accumulation of SeNPs in the cancer cell lines [96].

SeNPs can also associate with other elements to enhance 
their activity. Reports by Li et al. [19] described that inno-
vative Se-containing platinum-based nanoparticles (4 mM) 
showed selective cytotoxicity to both human hepatic L02 
and HepG2 cells. The cytotoxicity was attributed to an 
abnormal increase in ROS levels, induced by a diminished 
level of reduced GSH. This also provoked a failure in mito-
chondrial membrane potential and relocation of cytochrome 
c (cyt c), eventually inducing apoptosis [19]. Similar find-
ings were reported by Barbanete et al. [20] who developed 
selenite-doped hydroxyapatite nanoparticles loaded with 
a hydroxyapatite-binding anti-tumor platinum complex 
to investigate the proliferation of human prostate (PC3) 
or breast cancer cells (MDA MB-231) co-cultured with 
human bone marrow stem cells (hBMSc). Results highlight 
that platinum (80 µM) and Se (10 µM) released from the 
complex showed a selective cytotoxicity reduction of cell 
proliferation of cancer cells, without affecting the prolifera-
tion of hBMSc.

Cell Cycle Modulation

Selenocompounds have been reported to be involved in sign-
aling pathways of the regulation of cell cycle arrest, cell 
proliferation, and migration. MSeA was shown to have bet-
ter antitumor effects compared with SeMet and SeMSC in a 
human cervical carcinoma cell line (HeLa Cells). HeLa cells 
exposed to 3 μM of MSeA, SeMet, and SeMSC decreased 
levels of AKT by 55%, 45%, and 25%, respectively, com-
pared with cells without treatment. Only MSeA showed 
decreased levels of MAP kinase-kinase (ERK) pathway 
with 65%. ERK and AKT signaling pathways have important 
functions in cell proliferation and migration [97].

For squamous esophageal cell carcinoma, evidence 
provided by Ahsan et al. [98] Na2SeO3, (1–100 μM), Se-
(methyl) selenocysteine hydrochloride (10–100 μM), Se-
Met (10–100 μM), and MSeA (6 μM) demonstrated a pro-
tective result against DNA damage, suggesting a possible 
chemo-preventive effect. In addition, other effects showed 
a decreased inflammatory response, inhibition of cell pro-
liferation and colony formation, and reduction of apoptotic-
signal factors such as Ki-67 [98].
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Recent investigations have shown that repression of 
selenoprotein H (SELENOH) diminishes cellular differen-
tiation and enhances cell proliferation and migration, lead-
ing to higher tumor progression. In a nude-mouse model 
(C57BL/6 J and APC), knockdown cells of SELENOH also 
showed a faster cell cycle transition, making a favorable 
CRC tumor development [11]. On the other hand, high lev-
els of SELENOH found in tumors and undifferentiated cells 
demonstrated an inhibitory influence on the progression of 
the S phase in CRC. This highlights the key role of SELE-
NOH and the strong relationship between organic forms of 
Se supplementation (Se-enriched yeast + SeMet, 0.15 mg/kg 
daily) with the progression of CRC [11].

SELENOK is a critical component for the right activation 
and cell proliferation of the immune system [99]. Lower lev-
els of SELENOK in lung adenocarcinoma were associated 
with poor survival, as this protein may regulate the growth 
and migration of lung cancer through calcium (Ca2+) [99]. In 
this regard, high concentrations of SELENOK in three dif-
ferent choriocarcinoma cell lines (BeWo, JEG-3, and JAR) 
were shown to inhibit cell migration, adhesion, and prolif-
eration; these effects were also related to optimal levels of 
Ca2+ influx to the interior of the cell [100].

In previous studies, SBP1 has been suggested as a poten-
tial biomarker in the prevention and treatment of breast can-
cer as its expression was reduced in breast cancer tissues 
compared to normal ones [101]. Ectopic expression of SBP1 
attenuates the phosphorylation process of c-Jun and STAT1, 
which are linked to p21 transcription, ending in the G0/G1 
cell cycle arrest [15]. Elhodaky et al. [102] reported that 
reduced levels of SBP1 in prostate cancer cells inhibited 
AMP-activated protein kinase (AMPK) and stimulated oxi-
dative phosphorylation (OXPHOS) and tumor growth and 
progression at metastatic phase; the diminished levels of 
SBP1 were attributed to the binding of the transcriptional 
inhibitor hepatocyte nuclear factor-4 alpha (HNF4α).

The antitumor effects of Se-β-Lg were evaluated in an 
in vivo model in female mice inoculated with sarcoma can-
cer cells (S180) [103]. Mice administered with 150 µg/kg 
β-Lg, 100 µg/kg Se dioxide (SeO2), and Se-β-Lg at concen-
trations of 50, 100, and 150 µg/kg, 15 days before and after 
tumor injection. The best results in the inhibition of growth 
tumor we found for was SeO2 (53.05%), followed by Se-β-lg 
at 150 µg/kg (48.38%), while β-Lg showed a 21.51% tumor 
inhibition rate. The results indicated that Se-β-lg promotes 
apoptosis in S180 cells by blocking cell cycle in G0/G1 
phase and inhibiting cell proliferation.

Activation of Apoptotic Pathways

The impact of selenocompunds on the activation of apop-
tosis is reviewed. Among the proteins involved in apop-
totic responses, B-cell lymphoma 2 (Bcl-2) stands out. It 

promotes the survival of the cell by inhibiting pro-apoptotic 
responses, especially the expression of Bcl-2-like protein 4 
(Bax) and Bcl-2 antagonist killer 1 (Bak), which trigger the 
permeabilization of mitochondrial membrane, releasing cyt 
c, and generating reactive oxygen species (ROS), initiating 
an apoptosis reaction [104].

Functional foods can be proposed as preventive and pro-
apoptotic agents against cancer. For instance, Se-enriched 
chickpea sprouts (6.93 µg/g dw) induced the intrinsic apop-
totic pathway in immunosuppressed mice by enhancing 
the expression of caspase-9 and by blocking Bcl-2 [23]. 
Besides, Bcl-2 expression was diminished considerably in 
Wistar male rats with CRC supplemented with Se-enriched 
Saccharomyces cerevisiae (5 × 108 CFU/mL with 10% of 
Na2SeO3). In addition, lower expressions of p53, a tumor 
suppressor factor increased with Se supplementation. Then, 
Se-enriched yeast could act as a preventive factor for the 
development of CRC [22]. SBP1 has also been linked to 
tumor-suppressive activity activating cyclin-dependent 
kinase inhibitor 1A (p21) expression throughout a tumor 
suppressor p53-independent mechanism in human blad-
der cancer [15]. Harmanci et al. [105] demonstrated that 
SeMet in doses of 500 and 1000 μM induced DNA fragmen-
tation in glioblastoma multiforme cell line (GMS-10 and 
DBTRG-05MG) after 72 h incubation, leading to unchained 
apoptosis.

An important point of study for Se and its involvement 
in cancer development is the interaction between different 
apoptotic-related mechanisms; one of the major ones is the 
endoplasmic reticulum (ER) stress response. MSeA was 
evaluated by Lobb et al. [106], as a modulator for ER stress 
in malignant human blood cell lines, and THP1 monocytic 
leukemia cells (stressed with radiation, cytosine arabinoside, 
and doxorubicin chemotherapy). Intracellular proteins, such 
as binding immunoglobulin protein (GRP-78), phosphoryla-
tion of the eukaryotic initiation factor 2 (phospho-EIF2α), 
and X-Box binding protein 1 (XBP1), were indicators for 
Se-induced ER stress, which are directly related to ROS gen-
eration. Because of the ER stress response to MSeA sup-
plementation (2.5, 5, and 15 µM), the cell acquires a more 
oxidized state which in turn leads to apoptosis and necrosis 
pathways [106]. Similar findings were published by Evans 
et al. [13] in a leukemia model employing SeMSC. In this 
study, ER stress was closely related to caspase 8 activity.

Ca2+ ions act primarily as second messengers in cancer 
physiology; specifically, an increase of these ions results in 
tumor progression by facilitating proliferation and metastasis 
of malignant cells [107]. Studies suggest that Se acts as a 
regulation factor in Ca2+ channels, more specifically in tran-
sient receptor potential, cationic channels (TRPCC). Ertilav 
et al. [108] reported that docetaxel (10 nM) in combination 
with elemental Se (1 μM) induced apoptosis in brain tumor 
cell line (DBTRG) by increasing mitochondrial membrane 
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depolarization factor (JC1) and ROS production, following 
a decrease in cell viability with an increment in Ca2+ flux by 
mammalian transient receptor potential melastatin (TRPM) 
activity.

Furthermore, Sakalli et al. [109] indicated that Na2SeO3 
(200 nM) in combination with cisplatin (40 μM) decreased 
the accumulation of Ca2+ with activation of the transient 
receptor potential cation channel subfamily V member 1 
(TRPV1), resulting in apoptosis for breast cancer (MCF-7) 
cells. The depolarization of mitochondria relies on the flux 
of Ca2+ ions, which is prevented by selenocompounds.

Recently, β-lactoglobulin (β-Lg) has been used as a pos-
sible treatment due to its anticancer activities in different 
cell lines. Zhao et al. [110] investigated the effect of a novel 
Se modification complex (Se-β-Lg) on hepatocellular car-
cinoma cell lines (HepG2 and Hep3B cells). Se-β-Lg was 
used at different concentrations (25–800 μg/mL) in HepG2 
and Hep3B cells for 24–72 h, respectively. The study showed 
that Se-β-Lg induced apoptosis through the activation of 
cleaved caspase-8 and cleaved caspase-3 in HepG2 and 
Hep3B cells in a dose-dependent manner. In addition, the 
apoptosis of HepG2 and Hep3B cells could be triggered 
by cell cycle arrest. Additionally, Se-β-Lg in human breast 
cancer cells (MCF-7 and MDA-MB-231) showed apopto-
sis through the mitochondrial caspase-dependent apoptotic 
pathway and by cell cycle arrest. Furthermore, Se-β-Lg did 
not show toxic effects on normal human breast cells [111].

The antitumor activity of a Se polysaccharide from 
Pleurotus ostreatus (Se-POP-3) was evaluated in cancer 
liver (HepG2), breast cancer (MCF-7), and ovarian cancer 
(SKOV3) cells. Exposure of HepG2, MCF-7, and SKOV3 
to 600 g/mL of Se-POP-3 for 24 h increased apoptosis levels 
by 39.53%, 39.46%, and 31.84%, respectively. Besides, it 
was measured that the metastatic effect of Se-POP-3 was 
dose-dependent inhibiting migration of cancer cells without 
any effect on the growth of normal cells [46]. In addition, it 
is also evaluated that the antitumor activity of another Se-
enriched polysaccharide fraction (Se-POP-21) produced by 
Pleurotus ostreatus was also evaluated on different human 
cancer cell lines (A549, SKOV3, HepG2, and MCF-7). The 
results showed that Se-POP-21 reduced dose-dependently 
the viability of A549, SKOV3, HepG2, and MCF-7 cells 
and promoted apoptosis of A549 cells, without any effect 
on normal cells. Based on these studies, both compounds, 
Se-POP-21 and Se-POP-3, showed great potential as low-
toxic antitumor drugs. Further studies are required for the 
development or use of these compounds as a chemothera-
peutic agent [112].

Another protein combined with Se was ovalbumin, 
obtaining a complex that showed anticancer properties 
[113]. The anticancer effect of seleno-ovalbumin (Se-OVA) 
was evaluated in mice inoculated with H22 hepatoma cells; 
the study included a positive group (treatment with 5-FU 

at 20 mg/kg). Se-OVA (1.5 mg Se/kg) and positive groups 
showed lower tumor volume compared with the model or 
negative control group. The results showed a tumor inhibi-
tion rate of 48% for Se-OVA, while the treatment with 5-FU 
reported a 54% tumor inhibition. Even though the positive 
group had the lowest tumor weight and inhibition rate, the 
authors reported the death of two mice, which might be 
related to the side effects of 5-FU. Furthermore, Se-OVA 
showed an increase in the expression of Bax and cleaved-
caspase 9 and a decrease in the expressions of Bcl-2 com-
pared to the model group.

Besides, Se-OVA inhibits the proliferation of solid tumor 
cells by blocking the cell cycle in G0/G1 phase, and by acti-
vating apoptotic signals. Thus, Se-β-Lg and Se-OVA showed 
potential as antitumor agents and could have applications 
in food and drug industries as well as adjuvants in therapy 
cancer [103, 111].

On the other hand, mice xenografted with human breast 
cancer cells (MDA-MB-231) treated with Se-enriched Pyra-
cantha fortuneana (Se-PFPs) at 100 or 400 (mg/kg/day) for 
30 consecutive days showed anticancer effects by reduction 
of tumor volume. Control group (without Se-PFPs) and 
treatments with 100 or 400 Se-PFPs mg/kg/day had tumor 
volumes of 1366, 896, and 285 mm3, respectively [114]. 
Besides, Se-PFPs did not show to have toxic effects in the 
mice, as there were no deaths during the study and inhibited 
the growth and induced apoptosis of triple negative breast 
cancer cells.

Antiangiogenic Effect

Angiogenesis plays a significant role in the progression of 
tumors. When a tumor develops the complete formation of 
blood vessels or vascularization is very difficult to control. 
There have been some investigations regarding the role of Se 
in this critical process of cancer biology, such as early and 
cancer development stages [115].

Se consumed in water was reported to reduce the con-
centration of vascular endothelial growth factor (VEGF) 
by 63% compared to the control group in an in vivo model 
of induced CRC mouse [12]. Additionally, improvement in 
caspase-3 expression, and malondialdehyde content was 
also reported, while there was a decrease in reduced GSH 
concentration. A study in men supplemented daily during 
5 weeks with 300 µg Se in the form of selenized yeast regu-
lated the expression of genes involved in cellular migration, 
invasion, remodeling, and immune responses. In addition, 
the supplementation upregulated the expression of epithe-
lial markers, such as E-cadherin and epithelial cell adhe-
sion molecule (EPCAM), while the mesenchymal markers 
vimentin and fibronectin were downregulated [21].

There have been several approaches to study the effects 
and mechanisms of Se-enriched yeast (> 10% of Na2SeO3) 
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administered to a rat model. Results revealed that Se signifi-
cantly enhanced the expression of p53 in combination with 
a considerable reduction of angiogenic factor cluster of dif-
ferentiation (CD31). This last factor is crucial for endothe-
lial intercellular junctions in white blood cells and platelets 
[22]. Cai et al. [116] reported an angiogenic effect on human 
umbilical vein endothelial cells (HUVECs) with 2 µM of 
MSeA, with values ranging in moderate Se levels. The incre-
ment in adherence and the inhibition of cell migration and 
tube formation were the main effects of MSeA, leading to 
an impediment of sprouts of aortic rings for mice models 
and neoangiogenesis of chorioallantoic membrane for chick 
embryos. Additionally, downregulation and disordered clus-
tering of integrin β3 and repression of phosphorylation of 
protein kinase B (PKB), nuclear factor of kappa light poly-
peptide gene enhancer in B-cell inhibitor, alpha (IκBα), and 
nuclear factor kappa-light-chain-enhancer of activated B 
cells (NFκB) were achieved, leading to antiangiogenesis.

Lately, the development of SeNPs as antitumoral agents 
through biological methods has shown remarkable results 
[117]. In this regard, Rajkumar et al. [25] grew a strain of 
Pseudomonas stutzeri in the presence of 2 mM Na2SeO3 
and observed the generation of phenazine carboxylic acid 
that promoted Se oxyanions to a reduced nanoparticle state, 
which showed high stability. These particles reduced cell 
migration and proliferation and significantly decreased angi-
ogenesis in 30% of the cervical cancer cell line (HeLa) when 
administered at doses of 100 μg/mL [25].

To this regard, the chitosan oligosaccharide-conjugate 
Se (COS-Se) compound was analyzed as a functional food 
ingredient with anticancer properties [118]. Human gas-
tric cancer cells (SGC-7901) were exposed to COS-Se at 
concentrations of 100, 200, 500, and 1000 µg/mL for 48 h. 
COS-Se had a cytotoxic effect in SGC-7901 cells in a dose-
dependent manner. Besides, the anticancer effect of COS-Se 
was evaluated in nude mice transplanted with SGC-7901 
cells. Mice were treated with COS-Se at doses of 50 and 
100 mg/kg for 28 days. COS-Se showed a tumor inhibition 
rate of 29% and 33% at doses of 50 and 100 mg/kg, respec-
tively. The authors declared that COS-Se reduced levels of 
CD34, matrix metalloproteinase-9, and vascular endothelial 
growth factor in nude mice [118].

Tables 2 and 3 show a summary of the anticancer mecha-
nisms reported for selenocompounds, Se-enriched foods, and 
SENPs, in in vivo and in vitro models.

Combinatorial Therapies with Se

Table 4 summarizes some studies that have shown effec-
tive anticancer effects when chemotherapeutic agents were 
combined with Se. For cancer treatments, it has been used 
Se as a delivery method for doxorubicin, cisplatin, 5-FU, 

and ruthenium showing that Se enhanced from one to sixfold 
higher the uptake of chemotherapies for breast cancer cells 
(MCF-7). As a result, these strategies have recently shown 
a growing trend [122, 123].

Park et al. [124] investigated the combined effects of Se 
(10 μM) with docetaxel (DTX) at 500 pM on breast cancer 
cell line (MDA-MB-231) after 72 h of incubation. The com-
bined strategy decreased cell growth (15%), increased apop-
tosis (63%), and enhanced cell cycle arrest compared to the 
control group. The same combination therapy (Se + DTX) 
was evaluated in glioblastoma cells (DBTRG). Ertilav et al. 
[108] exposed to 10 nM DTX for 10 h and subsequently 
exposed to 1 μM Se for 10 h. This combination effectively 
inhibited cell proliferation in DBTRG cells compared with 
the control group. These authors concluded that the DTX 
and Se treatment was better than DTX treatment alone [108].

Likewise, the combined therapy of Na2SeO3 (200 nM) 
and cisplatin (40 µM) was evaluated on breast cancer cells 
(MCF-7). After 72 h of incubation, the combined therapy 
showed a more effective apoptotic effect by the activation 
of caspases 3 and 9 [109]. Moreover, the combination of 
Se-containing molecules with cisplatin (EG-Se/Pt) increased 
the inhibition of T-cell acute lymphoblastic leukemia and 
T-cell lymphoblastic lymphoma (Jurkat, Molt-4) cell viabil-
ity compared to cisplatin alone in a dose- and time-depend-
ent manner, inducing apoptosis and cell cycle arrest [125].

Another successful combination was the one reported by 
Wu et al. [126] who used Na2SeO3 (3 mg/kg) and Adria-
mycin prodrug Ac-Phe-Lys-PABCADM (PADM) (10 mg/
kg) in an in vivo model. Nude mice were xenografted with 
gastric cancer cells (SGC-7901). The drug administration 
(Na2SeO3 + PADM) was given four times each 8 days dur-
ing a total period of 40 days. The authors concluded that 
this combined therapy promoted apoptosis in gastric cancer 
xenografts by the elevation of proapoptotic proteins such as 
caspase 3, caspase 9, and p53.

Paclitaxel is another chemotherapeutic drug that com-
bined with Se has shown anticancer effects in MCF-7 cells 
[127]. MCF-7 cells incubated with 50 µM Paclitaxel and 
5 µM Na2SeO3 for 24 h showed an increase of ROS, and 
higher levels of caspases 9 and 3 compared with the treat-
ment with only paclitaxel (50 µM). The combination of Se 
and paclitaxel in MCF-7 cells had synergistic effects espe-
cially in terms of increasing apoptosis of this specific cell 
line [127].

Selenium Status and Cancer Risk

Se status refers to the amount of biologically active sele-
nium in the body resulting from the intake, retention, and 
metabolism of selenized compounds in the diet. It is an 
indicator of cancer risk and can be monitored measuring 
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serum levels of Se and SELENOP. There is no linear rela-
tionship between Se status and cancer. Some studies suggest 
that the median level of plasma Se required for a significant 
reduction in cancer risk ranges from > 84 to 147 μg/L [128, 
129]. For nearly two decades, it has been reported that the 
minimum Se intake required to achieve these plasma con-
centrations ranges from just below the RDA/RNI level to 
a total intake of about 140 μg/day from dietary Se [130]. 
In a nested case–control study of baseline serum Se lev-
els and cancer risk with 19,573 females from Szczecin, 

Poland, there was evidence for an increased risk of cancer 
among women in the highest of Se levels (i.e., > 90 μg/L); 
this result suggests that the optimum serum level of Se in 
women from Poland should be between 70 and 90 μg/L 
[131]. The Nutritional Prevention of Cancer Trial evaluated 
Se supplementation as selenized yeast (200 µg/daily) during 
6.4 years in 1312 participants from the southeastern United 
States. Se supplementation reduced total (37%) and prostate 
(67%) cancer incidence but was not significantly associated 
with lung and colorectal cancer incidence. Participants with 

Table 2   In vitro assay of selenocompounds with anticancer activity

Source of selenocompounds Cell line Dose Main mechanisms References

Na2SeO3 A375 and T24 4.7 μM and 3.5 μM IC50 at 24 h, cytotoxic activity [88]
Na2SeO3 RT-112 2.5 μM At 48–72 h, cytotoxicity activity, 

DNA and mitochondrial dam-
age. Necroptosis cell death

[92]

Na2SeO3 MCF-7 1 mol/L At 48 h, SBP1 protein levels 
were reduced, ROS generation, 
apoptosis,

[90]

O3SSe−2 HepG2 13.8 μM IC50 at 24 h, cytotoxicity activ-
ity

[88]

SeMet and SeMSC HeLa 10 μM Inhibited AKT signaling path-
ways and the migration

[97]

SeMet GMS-10 and DBTRG-0 MG 50–1000 μM DNA fragmentation and cell 
death

[105]

MSeA HeLa cells 10 μM Inhibited ERK and AKT signal-
ing pathways and suppressed 
the cell proliferation and 
migration

[97]

MSeA HUVECs 2 µM Inhibits angiogenesis by down-
regulating integrin β3 signaling

[116]

MSeA THP1 5 μM DNA damage and ER stress [106]
Se-β-Lg Hep G2 and Hep 3B 500 μg/mL Apoptosis and cell cycle arrest [110]
Se-β-Lg MCF-7 and MDA-MB-231 0–400 μg/mL Increased the expression of 

cleaved-caspase-9 and cleaved-
caspase-3 and cell cycle arrest

[111]

Se-enriched polysaccharide  
(Se. POP-3)

HepG2, MCF-7 and SKOV3 600 g/mL Increased apoptosis, inhibiting 
migration of cancer cells

[46]

Se-enriched polysaccharide  
(Se-POP-21)

A549, SKOV3, HepG2, and 
MCF-7

600 g/mL Reduced the viability and pro-
moted apoptosis

[112]

SeNPs-apigenin MCF-7 cell 1000 μM/mL Increased the Cas-3 activity. 
Decreased the expression of 
Bcl2, induced apoptosis, and 
inhibition of cancer cell migra-
tion and invasion

[119]

Si-SeNPs-silymarin AGS 20 mM (0.4–25.6 µg/ mL) Induced expression of Bax/Bcl-2, 
cytochrome c, and cleavage of 
caspase proteins, mitochondria-
mediated apoptosis

[120]

SeNPs-hydroxyapatite MDAMB-2, PC3, and hBMSc 50 mg Decrease proliferation and selec-
tively cytotoxicity

[20]

SeNPs synthesized by  
Pseudomonas stutzeri

HeLa 100 µg/mL Decrease of proliferative activity, 
cell migration and angiogenesis

[25]

Se-containing platinum L02 HepG2 4 mM Apoptosis by caspase activation 
and cyt c release

[19]
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baseline plasma Se concentrations in the lowest two tertiles 
(< 121.6 ng/mL) experienced reductions in total cancer 
incidence, whereas those in the highest tertile showed an 
elevated incidence [132]. Opposite results were reported in 
The Selenium and Vitamin E Cancer Prevention Trial, in 
which it was observed that 200 µg Se/daily had no effect 
on incidence of prostate cancer in a high-Se US population 
(136 μg/L) [133].

Single Nucleotide Polymorphisms 
on Selenoproteins

SNPs are genetic variations in the human genome, and some 
of them are associated with genetic susceptibility to can-
cer. These genetic variations could play an important role 
in shaping tumor environment, immune response, therefore, 
the response to chemotherapy, and other natural compounds 
[134]. The effects of SNPs in genes resulted in the regula-
tion of DNA damage, cell cycle, metabolism, and immunity 
regulation, which are mechanisms associated with cancer 
progression and the therapy response [135]. It is known 
that the presence of genetic variations on Se metabolism 
can impact the synthesis of selenoproteins or have an influ-
ence on their biochemical functions [136]. For that reason, 
SNPs in Se metabolism have been investigated due to their 
relationship with the appearance of some diseases, such as 
cancer [136].

In this regard, the relationship between SNPs in the 
SELENOS gene and the susceptibility to gastric cancer was 
assessed in the Chinese population. The presence of two 
SNPs, rs34713741, and rs28665122 in the SELENOS gene 
was associated with a risk of that cancer. The study was 
made with 260 patients with gastric cancer and 278 healthy 
counterparts that served as controls. Only rs34713741 SNPs 
in SELENOS showed association with gastric cancer, while 
rs28665122 did not have differences of genotype frequencies 
between patients with cancer and the control group [137]. 

Recently, through a meta-analysis study, the SELENOS gene 
rs34713741 polymorphism has been associated with a higher 
risk of both gastric cancer and CRC [138]. The relationship 
of SNPs in selenoproteins genes with CRC development was 
also studied in the Iranian population. The SNPs analyzed 
were rs7579 and rs34713741 in SELENOP and SELENOS 
genes, respectively. No differences in selenoprotein gene 
SNPs between patients with CRC and controls were found, 
suggesting that these polymorphisms do not increase the risk 
of CRC cancer in the Iranian population [139]. Likewise, the 
risk of breast cancer in the Iranian population was associated 
with the presence of SNPs, rs5859, in the SELENOF gene. 
This was determined by studying 150 patients with histo-
logically breast cancer and 200 healthy patients. Differences 
in the distribution of allele frequencies were found between 
healthy patients and those with breast cancer. Patients carry-
ing AA and AG genotypes had a higher risk of breast cancer 
compared to counterparts with GG genotype; thus, SNPs 
rs5859 in the SELENOF gene may be associated with breast 
cancer [140].

In addition to the study of the relationship of the SNPs 
and the development of cancer, researchers have focused on 
the SNPs related to the metabolism of Se. This relationship 
could impact on Se status and therefore the Se response on 
aforementioned anticancer mechanisms. A study of geno-
typed volunteers that were supplemented for 6 weeks with 
100 µg of Na2SeO3 per day. The results indicated that con-
centrations of Se in plasma, SELENOP, and GPX3 protein 
increased after supplementation. However, Se in plasma in 
supplemented volunteers depended on SELENOP genotype 
associated with gender and SNP 24,731. On the other hand, 
SNP 25,191 in SELENOP had an impact post-supplemen-
tation [141].

Se status or response to supplementation has been asso-
ciated with SNPs, mainly in SELENOP, dimethylglycine 
dehydrogenase (DMGDH), GPX1, and GPX4. A study car-
ried out with pregnant woman reported genetic variations in 
DMGDH (rs921943), SELENOP (rs3877899 and rs7579), 

Table 4   In vitro studies of combination therapy with selenocompounds and chemotherapeutic agents

DTX, docetaxel; EG-Se/Pt, Se-containing molecules with cisplatin; Na2SeO3, sodium selenite

Selenocompounds and  
chemotherapeutic drugs

Incubation time Type of cancer Cell line Therapeutic effect Reference

DTX (500 pM) + Se (10 µM) 72 h Breast MDA-MB-231 MCF-7 Inhibits cell proliferation and 
increase apoptosis

[124]

DTX (10 nM) + Se (1 μM) 20 h Brain/spine DBTRG​ Inhibits cell proliferation [108]
Cisplatin (40 µM) + Na2SeO3 

(200 nM)
48 h Breast MCF-7 Induce antitumor and apop-

totic activity
[109]

EG-Se/Pt
(5–100 µM)

72 h Leukemia and lymphoma Jurkat Molt-4 Inhibition of cell viability and 
increase of apoptosis

[125]

Paclitaxel (50 µM) + Na2SeO3 
(5 µM)

24 h Breast MCF-7 Increase of ROS and apop-
tosis

[127]
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GPX1 (rs1050450), and GPX4 (rs713041). The results 
showed that SNPs in DMGDH (rs921943) and SELENOP 
(rs3877899) were significantly associated with serum Se 
concentration [142].

More recently, Fedirko et al. [143] examined the associa-
tion of SNPs related to the Se metabolism in the develop-
ment of CRC. The study was developed with the collabo-
ration of European patients with CRC (1420) and healthy 
patients (1421) that had suboptimal blood levels of Se 
(84.0–85.6 µg/L). The blood of each patient was analyzed 
in order to correlate the presence of SNPs that affect Se and 
selenoprotein metabolism with the development of CRC. 
The subsequent SNPs, rs17080528, rs11705137, rs4659382, 
rs2275129, and rs11111979 were found in selenoproteins 
genes, GPX1, SELENOM, SELENON, selenophosphate syn-
thetase 1 (SEPHS1), and TXNRD1, respectively, which are 
involved in Se and selenoprotein transport, biosynthesis, and 
metabolism and their presence linked to the development of 
CRC [143]. On the other hand, SNPs were associated with 
selenoproteins genes that influenced the status of SELE-
NOP favoring the development of CRC, such as SELENON 
(rs4659382, rs11247710, and rs2072749), and in TXNRD1 
(rs11111979). These selenoproteins and their genetic vari-
ations with antioxidant activity can have a great impact on 
carcinogenesis [143].

These outcomes could predict the behavior of biomarkers 
of Se status and thus susceptibility to disease such as cancer. 
Besides, knowing SNPs that affect the Se metabolism, it is 
possible to predict the response to supplementation, and thus 
the effect of Se on some diseases such as cancer. In addition, 
investigations should focus on finding the SNPs that affect 
some anticancer mechanisms in order to adjust Se supple-
ments doses or the type of compound.

New Approaches: Insights About Gut 
Microbiota

The microbiome and the interplay with dietary habits are 
among the top factors that predispose mammals to cancer 
development. Microbiota influences Se forms and status, 
as it favors its biotransformation and selenoprotein expres-
sion. Colonization of germ-free mice induced the expres-
sion of different selenoproteins displaying a higher risk of 
Se deficiency when Se intake was limited [144]. Besides, 
Se can also modulate microbiota diversity and composition 
increasing the relative abundance of some health-promoting 
taxa such as Christensenellaceae, Ruminocococcaceae, and 
Lactobacillus; furthermore, Se supplementation also lead 
to associations of specific bacteria taxa with plasma seleno-
proteins like GPX3, SELENOP, and selenoalbumine [145].

Different studies suggested that Se supplementation on 
gut health is associated with the gut microbiota. In this 

regard, fecal microbial transplant studies showed that Se pro-
tects the intestinal barrier function and immune responses 
[146]. The impact of gut microbiota on selenoproteins and 
other molecules linked to signaling pathways involved in 
oxidative stress, apoptosis, inflammation, and immune 
responses suggest a direct influence of Se and microbiota 
in the development of chronic diseases and cancer [147]. 
Se-enriched Saccharomyces reduces oxidative stress and 
inflammatory responses, protecting mice against pathologi-
cal consequences associated with mucositis induced by 5-FU 
used in many types of cancer therapies [148].

Supranutritional levels of Se enhanced fermentation and 
the production of short-chain fatty acids, with a positive 
impact on epithelial and mucosal stability. In addition, the 
supplementation reduced inflammation and ultimately car-
cinoma development [146].

The administration of probiotics with Se has been pro-
posed as an alternative in CRC treatments. For instance, 
the enrichment of SeNPs with Lactobacillus plantarum 
improved host immune response and life span of cancer-
bearing mice [121]. Similar effects were also shown by the 
oral administration of SeNPs enriched with Lactobacillus 
brevis, which besides stimulating the immune response also 
reduced liver metastasis in a breast cancer mice model [149].

Knowing more about how microbiota interact and play 
an important role on Se status, response to supplementation, 
and metabolism could open a gap of other mechanisms that 
Se could act against some diseases such as cancer.

Conclusions and Future Approaches

In the last decade, Se has been the spotlight of micronutri-
ent research because of its proven novel and complemen-
tary effects against cancer primarily due to its antioxidant 
and pro-apoptotic activities. Se toxicity remains a relevant 
topic, and therefore, scientists are looking for non-toxic ways 
of administration especially in terms of organic Se forms, 
which are comparatively less toxic and more bioavailable. 
Several in vitro studies have further advanced in the full 
understanding of the cellular and molecular pathways that Se 
undergoes, whereas in vivo investigations offer a new vision 
to elucidate its physiological roles. However, the need for 
novel and macro-scale clinical studies is critically important 
to fully grasp the synergism of different Se compounds with 
other treatments like chemotherapies. In addition, the latest 
innovations in genomics and the role of the microbiota in 
foods open new paths to improve the efficacy of Se-enriched 
products, placing this essential mineral as a crucial element 
for prolonging the average life of humans. The applicability 
of the different forms of Se recently investigated may offer 
new natural preventive or therapeutic strategies to improve 
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the quality of life for people that suffer from cancer or other 
diseases that exacerbate due to oxidative stress.
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