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Abstract: The trophic ecology of wetlands with mangrove forests remains poorly understood.

Through the use of stomach contents analysis, stable isotope signatures, and Bayesian mixing models,

the food web of a tropical wetland in the gulf of California was investigated. Consumers had

heterogeneous diets, omnivores were the most abundant species (47%), followed by planktivorous

(21%), minor piscivores (10%), major piscivores (10%), macrobenthivores (9%), and herbivores (3%).

The values of δ13C (from −12 to −29%�) and δ15N (from 4 to 24%�) showed a wide range of isotopic

values of the consumers. Most of the species had a broad isotopic niche and there was a large diet

overlap of species due to the exploitation of a common set of food resources. Five trophic levels were

identified, with the weakfish (Cynoscion xanthulus) as the top predator of this system with detritus

coming from the mangrove as the main source that supports the food chain. This highlights the

importance of the mangrove forests to such ecosystems, because not only they are the most important

primary food source, but also, they offer habitat to a large suite of fauna, which are important

components of the trophic chain.

Keywords: trophic level; stable isotopes; mangrove ecosystem

1. Introduction

Tropical wetlands with mangrove forests are highly threatened socio-ecological systems, where

local communities rely heavily on aquatic animal protein, (such as fish and crustaceans), to meet

food security [1]. These systems are biologically productive with a high rate of primary productivity

supporting a high species diversity and exhibiting complex trophic webs [2–4] and have long been

recognized to be major nursery areas for numerous commercially and ecological important consumers

as fish, crustaceans, etc. [5,6]; for example, a high abundance of fish in these habitats has been explained

by the ecosystem complexity, accessibility to the food sources, and lower risk of predation [7–9].

The function of mangroves as a potential source of food has been discussed in different

investigations, some of them mention that mangrove organic matter provides important nutrition

to aquatic communities [10–14]. In contrast, other research indicates that carbon derived from

mangroves is less important as an energy source for aquatic food webs in comparison to other primary

sources [15–21].

The hypothesis that mangroves contribute little to food webs is discussed in several studies

that have used stable isotope analysis of carbon and nitrogen in systems dominated by mangroves.
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These investigations mention that the isotopic values in consumer tissues are deemed too distant

to directly relate the biomass of the consumer with the assimilated mangrove [4,15,17,22–24].

In this context, microphytobenthos (available in detritus), macroalgae, and phytoplankton that

are more carbon-rich, with higher nutritional quality and easily available to consumers compared

to mangrove litter have been suggested as the most important primary sources [4,25]. However,

despite decades of research on this topic, the relative importance of different primary sources supporting

secondary productivity in estuarine ecosystems is still rather uncertain, because most of their results

are inconclusive.

In the American Pacific one of the most important regions in regard to the abundance and density

of mangrove forests associated with estuarine systems is Marismas Nacionales (Mexican Pacific),

nevertheless, there is still a paucity of basic food web studies for these mangrove zones. The few studies

devoted to elucidate the food web associated to lagoon-estuarine systems in this area had a quite

different approach, as the Ecopath approach [26], as trophic biomagnification of trace metals [27,28],

or trophic relations within food webs [4,29,30]. Then, it becomes crucial to study the food web structure

and energy flows to understand the functioning of mangrove ecosystems, which are changing with the

growing pressure from the human activity. These kinds of studies provide basic information on food

sources, trophic interactions between species, energy flows from primary producers to consumers of

different trophic levels (TL), and allow the understanding of the ecosystems functioning. The objective

of this study was to determine food sources and identify different food webs of an estuarine system

with a high mangrove density from the region of Marismas Nacionales, based on the application of

stomach contents analysis (SCA), stable isotope analysis (SIA), and isotope mixing models (IMM) as

tools to quantify contributions from sources to consumers. We propose the hypothesis that the direct

contribution of the mangrove forests is low in comparison to the different primary sources that sustain

the food web of this ecosystem, but also that the mangroves play an important role because of their

structural complexity, which is essential for many species of fish and macroinvertebrates which eat

and prey within this mangrove structure.

2. Materials and Methods

2.1. Study Area

The study was conducted in the tropical wetland of Teacapan, situated in the northern part of

Marismas Nacionales complex, SE Gulf of California. It has a 1 km long—9 m deep inlet that connects

the system with the sea, and there are two rivers that drain into this system all year round (Figure 1).

The mean annual land temperature varies between 20 and 40 ◦C, the average annual precipitation is

1459 mm, and the evaporation rate is 1991 mm/year.

2.2. Sample Collection and Processing

A total of eight stations were sampled from August 2012 to October 2014 on a monthly basis.

At each station all potential food sources were collected (mangrove, macroalgae, particulate organic

matter (POM), sediment organic matter (SOM), and phytoplankton), as well as consumers (zooplankton,

macrobenthos (polychaetes, bivalves, shrimps, and crabs), and fishes).

At each station particulate organic matter (POM), mixed phytoplankton, zooplankton,

and suspended organic matter samples were collected with a plankton net with a mesh size of

30 and 200 µm. These were separated by filtering 500–2000 mL from water samples through a

pre-combusted (500 C, 4 h) glass fiber filter (GF/F) with a plastic syringe and then dried to a constant

weight at 55 ◦C [31]. Superficial water samples were collected in HCl-cleaned polyethylene 1 L bottles

and suspended particulate matter (SPM) was separated by filtering. The upper layers (5 mm) of

bottom sediments were collected at each sampling point using a Van Veen bottom 0.1 m2 grab sampler.

From these sediments, polychaetes and other macrofaunal organisms were separated and sieved

through a 0.5 mm mesh.
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Figure 1. Map of the studied area. Black dots indicate sampling stations.

At the mangrove area closest to each sampling station, green and senescent mangrove

leaves, macroalgae, snails, and crabs associated with mangrove roots were collected by hand.

Macroinvertebrates and fish were captured with a gillnet of 3.5 inches of mesh size, which was left adrift

for 20 min. After that, the catch was sorted, put in plastic bags, and iced for their transportation to the

laboratory. Only the most abundant and frequent species were used for the analysis and construction

of the trophic food web, these are marked by * in Table S1.

2.3. Feeding Habits (Stomach Contents Analysis)

Stomach contents of macroinvertebrates and fish were processed according to [4]. The index of

relative importance (IRI) was calculated with the formula IRI = (%N +%W) × (%F), where %N and

%W represent the food items’ numbers and wet weights, respectively. The frequency of occurrence

(%F) of each food item (presence-absence) in all stomachs that contained food [32] and subsequently

modified as a percentage [33].

Multivariate analyses were used to statistically check whether the different species could be

grouped according to their feeding habits and TL. To do this, a matrix was constructed that included

predators in the columns and the prey items as rows, and the IRI as values. The data were square

root transformed to reduce the effect of very abundant prey on the analysis whilst retaining the

quantitative nature of the data, and transformed to a resemblance matrix. Two factors were assigned to

group the predators according to their feeding guild (herbivore, detritivore, omnivore, planktivorous,

carnivore 1, carnivore 2, and carnivore 3), and their TL (1.65–2 = Low, 2.1–3 =Medium, 3.1–5 = High).

A permutational MANOVA (PERMANOVA) and a principal coordinates analysis (PCO) [34] were

undertaken in order to test the null hypothesis that the feeding habits of the different fish species is not

different according to the factors utilized [4].

2.4. Stable Isotopes Analysis (SIA)

Isotopic analyses included seston, detritus, phytoplankton/zooplankton, macroalgae, angiosperms,

macrofaunal benthic organisms, and the most abundant species of macroinvertebrates and fish in the
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system. Sample processing for the isotopic studies were done according to the methodology previously

described [4].

Values of δ13C and δ15N were used to determine whether differences exist in the isotopic signals

according to season and feeding guild through a Kruskal-Wallis ANOVA. Two seasons were identified,

the hot and rainy season (September to November), and the dry and cold season (December through

March). The feeding guilds were the same as previously explained.

2.5. Trophic Position (TP)

Since consumers were collected from two sources (pelagic and benthic), each with a separate set

of primary producers and detritus, we used the equation of Post [34] to calculate the trophic position

SIANC (stable isotope analysis in carbon and nitrogen) for all fish and macroinvertebrates species,

taking into account that the proportion N in the consumer is derived from both sources in the trophic

network:

TPSIANC = λ + (δ15NC − [δ15Nbase1 × α + δ15Nbase2 × (1 − α)])/∆15N (1)

where λ is the trophic level of the base of the food web, δ15NC is the isotopic value of nitrogen in

the consumer, δ15Nbase1 and δ15Nbase2 are mean δ15N values of food web 1 (pelagic) and 2 (benthic)

baselines, respectively, and ∆
15N is the fractionation of N between each trophic level. α was estimated

following a two-endmember-mixing model that distinguishes both sources of carbon or energy:

α = (δ13CC − δ13Cbase2)/(δ13Cbase1 − δ13Cbase2) (2)

where δ13Cbase1 and δ13Cbase2 are mean of δ13C pelagic and benthonic, respectively [35]. Four primary

sources were considered: (1) Phytoplankton, (2) seston and detritus, (3) benthic macroalgae, and (4)

mangroves. Several investigations have used a trophic fractionation value of the nitrogen isotope

that fluctuates between 2 and 4%�, (i.e., [25,34–36]). An assumed value of F = 3.4%�was used in this

study [36].

2.6. Food Web Structure

To determine the trophic structure of this wetland, the most abundant species of macroinvertebrates

and fish that were present throughout the year were taken into account (Table S1). In order to describe

the hierarchy and build a detailed quantitative flow for the food web, an approach that combines

data from SCA and SIA was used. First, we began with a simple connectivity web by identifying the

presence or absence of food items through stomach contents analysis; second, we transformed the

connectivity web into a diet proportion web based on the fraction of each food found in the SCA;

and third, based on SIA results, we estimated the proportion of each prey in the diet of each consumer

using a Bayesian mixing model stable isotope analysis in R (SIAR) v. 4.2 [37].

The Bayesian method SIBER (stable isotope Bayesian ellipses in R) was used to define the isotopic

niche space among the different groups as a measure of their isotopic resource use area at the population

level. This method is based on the two-dimensional isotopic space of δ13C and δ15N, and assessed

using the Bayesian analysis of standard ellipses; unlike the Euclidean methods, this analysis can

incorporate uncertainties such as sampling biases and small sample sizes into niche metrics [38].

A Monte Carlo simulation to correct the bivariate ellipses (δ13C and δ15N) was used, surrounding the

data points in the 95% confidence interval for the distributions of both stable isotopes [39]. The results

of both producers and consumers were plotted in δ13C vs. δ15N diagrams to analyze differences in

diet and trophic position between the different animal groups. Additionally, two-dimensional (δ13C

and δ15N) probabilistic (95%) regions for each of the groups identified using a Bayesian framework

in the package “nicheROVER” [40]. This package was used to calculate the probability overlap of

isotope niche regions by pairs, providing directional estimates of niche overlap, accounts for groups

(primary sources and consumers) distributions in multivariate niche space, and produces unique and

consistent bivariate projections of the multivariate niche region. The niche region is defined as the joint
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probability density function of the multidimensional niche indicators at a user-defined probability

alpha (in this study 95%) [40].

3. Results

Primary sources collected included phytoplankton, detritus/seston, two mangrove species

(Rizophora mangle and Laguncularia racemosa), and three species of macroalgae (Gracilaria vermiculophylla,

Caulerpa sertularoides, and Ulva lactuca). Consumers included zooplankton (copepods constituted

the 70%, the rest was composed by euphausiids, chaetognatha, fish larvae, and siphonophores),

macroinvertebrates (bivalves (Crassostrea cortezienzis and Mytella strigata), snail (Littoraria pintado),

barnacles (Fistulobalanus dentivarians), polychaetes (Streblospio benedecti), crabs (Callinectes arcuatus,

Portunus asper, Aratus sp., and Uca sp.), and shrimp (Litopenaeus vannamei)). Fish represented the most

important group in relation to their abundance; 72 fish species were identified, belonging to 24 families.

One fish species was classified as abundant, 17 as frequent, 29 as common, and 24 as rare species

(Figure 2).

 

δ δ

δ δ

δ δ

δ δ

δ δ

0

5

10

15

20

25

-30 -25 -20 -15 -10

δ1
5 N

δ13C
Primary sources Zooplankton Bivalves Gasteropods
Crabs Polychaetes Fishes Shrimps

Figure 2. Relationships between mean δ13C (%�) versus mean δ15N (%�) in food sources (primary

producers) and predators (zooplankton, macroinvertebrates, and fish) in the wetland of Teacapan.

3.1. Feeding Habits

The stomach contents of 1324 organisms of the most frequent and abundant species of fish and

macroinvertebrates were analyzed with multivariate analyses. From these, 26% were empty and were

not considered for the analyses. The omnivores were the most abundant feeding guild in this system

(47%), followed by planktivorous (21%), carnivores 2 (10%), carnivores 3 (10%), carnivores 1 (9%),

and herbivores (3%) (Figure 2).

The oyster (C. cortezienzis), the mussel (M. strigata), and the herring (O. libertate) were planktivorous,

for both zoo and phytoplankton. Anchovies and sardines feed mostly on plankton but also on

detritus/seston. The polychaete (S. benedicti) and the mullets (Mugilidae), the Pacific anchoveta

(C. mysticetus) and the milkfish (C. chanos) preyed on plankton as well as on detritus. The snail

(L. pintado) preyed on macroalgae. A suite of predators which were initially considered as detritivore

and omnivores, preyed on benthic species such as infaunal crustaceans, polychaetas, echinoderms,

bivalves, and decapoda crustaceans. These included crabs, shrimps, and different species of demersal

fishes. Species considered as carnivores 1 (cat fish and grunt) preyed mainly on decapoda. Carnivores
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2, which included a catfish and two species of jacks, preyed mostly on shrimps and prawns, and the

carnivores 3 preyed mainly on fish and cephalopods, although these were not found in the system.

These included snappers, snook, and weakfish (Table S1, Figure 3).

 

 

Figure 3. Principal coordinates analysis (PCO) showing the predators and their a priori designated

feeding guild analyzed in the studied wetland. The vectors indicate the most important prey items for

each group of predators.

Differences were found according to PERMANOVA in relation to the feeding guild

(Pseudo-F2,17 = 7.34, p < 0.01). The pairwise comparison test (Table 1) shows that with the exception of

carnivores 2 and carnivores 3, and detritivores and omnivores, all the guilds were different among them.

Table 1. Permutational MANOVA (PERMANOVA) results of the pairwise comparisons of the diet of

the different feeding guilds analyzed for stomach contents analysis (SCA).

Groups t p-Value

Carnivore 2, Carnivore 1 3.7035 0.01
Carnivore 2, Carnivore 3 1.0591 0.38
Carnivore 2, Planktivore 8.3074 0.00
Carnivore 2, Detritivore 8.0119 0.00
Carnivore 2, Omnivore 4.0007 0.00

Carnivore 1, Carnivore 3 4.3625 0.01
Carnivore 1, Planktivore 5.5486 0.01
Carnivore 1, Detritivore 3.6465 0.02
Carnivore 1, Omnivore 2.0959 0.05

Carnivore 3, Planktivore 9.265 0.00
Carnivore 3, Detritivore 10.364 0.00
Carnivore 3, Omnivore 4.1795 0.00
Planktivore, Detritivore 4.4535 0.01
Planktivore, Omnivore 2.4284 0.03
Detritivore, Omnivore 0.53857 0.73
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3.2. Isotopic Niche

In total, 302 samples of biological material were isotopically analyzed, representing species at all

the trophic levels (from primary producers to Carnivores 3) (Table S1).

According to the carbon isotopic composition, the primary producers in this system are

a combination of benthic macroalgae and mangrove (C3 type photosynthetic mechanism),

phytoplankton (photosynthetic mechanism of type C3 and C4), seston, and detritus. For primary

producers the values of δ13C were from −29.66 to −16.70%�, the most negative values corresponding to

the mangrove, detritus, and phytoplankton while the highest values corresponded to the macroalgae

(Figure 3). Values of δ13C for the organic matter in detritus suggested that the origin is mostly

mangrove contribution because they have very close values. The concentration of δ15N values varied

from 3.55 to 11.46%� without significant differences between the different types of primary producers

(Kruskal–Wallis; p > 0.05). Isotopic values of δ13C in zooplankton (copepods) ranged from −22.28 to

−16%� and from 8.05 to 13.26%�with respect to δ15N (Figure 4). The macroinvertebrates showed values

of δ13C between −23.65 and −16.32%�, while δ15N varied from 6.73 to 14.94%�; gastropods and bivalves

recorded the most impoverished values, and the decapods (crabs and shrimps) the highest values in

both isotopes. The fish values of δ13C and δ15N showed the widest range of registered isotopic values

with a δ13C from −23.57 to −15.84%� in δ13C and from 4.58 to 24%� in δ15N (Figure 3). There were no

significant differences between the rainy and dry season (Mann-Whitney U test, p > 0.05).

The isotopic space of the primary sources and of the consumers varied according to the origin,

aspects of the diet, and the habitat of the consumers over time. Measurements of total area (convex

hulls) and standard ellipse areas (SEAc) of isotopic spaces obtained with SIBER were generally large

for all groups (Figure 4, Table 2). Relative to the time of year, primary sources and consumers have

a broad niche of isotopes (SEAc = 29.9 and 29.2%� for rain and dry, respectively) with an overlap of

over 90%. Regarding the primary sources, the projected overlap of the mangrove isotope spaces and

detritus presented the highest probability of overlap (37.3 and 89.4%) indicating an isotopic relationship

between both sources, followed by phytoplankton and macroalgae presented the probability of

overlap lower isotopic occupying a different isotopic space than the other primary sources (Table 2).

Although Figure 4 shows that phytoplankton has the largest overlap with mangrove and detritus, it is

necessary to consider that the results from Table 2 are based on a Bayesian framework, which provide

a statistical probability of overlap of the two dimensions (carbon and nitrogen isotopes), hence the

difference between the table and what is observed in the graph.

The isotopic niche of consumers according to the taxonomic group presented a SEAc that varied

from 7.3%� for gastropods to 29.6%� for fish, with high isotopic overlaps between them in general.

Regarding the type of feeding, the SEAc obtained varied between 20.8 and 30.7%�with niches overlaps

greater than 60%, except for herbivores that registered a SEAc of 2.2%� and overlap less than 20%

(Figure 3, Table 2). This high overlap of niches indicates that consumers share resources that occupy

similar isotopic spaces.

The isotopic space of the primary sources and predators varied according to their origin,

feeding habits, and habitat. Convex hulls and SEAc of the isotopic spaces obtained with SIBER

were large for all groups analyzed (Figure 4, Table 2).

In relation to season, primary sources and predators have a wide isotopic niche (SEAc = 29.9

and 29.2%� for rainy and dry seasons, respectively), with an overlap of over 90%. Mangrove and

detritus isotopic spaces showed the highest overlap indicating that there is an isotopic relationship

between both sources. On the other hand, phytoplankton and algae showed the lower isotopic overlap,

thus occupying a different isotopic space than all other primary sources. Consumers’ isotopic niche

showed a SEAc, which varied from 7.3%� for gastropods to 29.6%� for fish, with a high isotopic overlap

between them (Table 2).

In terms of feeding habits, SEAc varied between 20.8 and 30.7%�with overlaps above 60% in some

cases. Except for herbivores which showed a SEAc of 2.2%� and overlaps below 20%. These values

indicate that predators share resources occupying similar isotopic spaces.
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Figure 4. Comparison of the area of the isotopic niches by groups: Between season for all species,

primary sources, consumers (taxonomic group), and feeding guild. Rectangles represent the 50, 75, and

95% credible intervals (dark to light shading, respectively), and black dots represent the mode values.
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Table 2. Total area (convex hulls), mean standard ellipses areas of two-dimensional niches region, mean

overlap probability of 95% niche regions (probability of group A overlapping with group B), and 95%

credible intervals of each group.

Category Group TA SEAC
Mean Overlap Probability

(%)
95% CI

Season
Rainy 166.6 29.9 Dry 94.4 90–97
Dry 155.7 29.2 Rainy 93.8 90–97

Primary
sources

Detritus 3.7 5.2

Phytoplankton 34.9 15–71
Macroalgae 10.4 0–38
Mangrove 37.2 15–66

Phytoplankton 19.7 14.6

Detritus 88.9 50–100
Macroalgae 63.9 30–95
Mangrove 79.5 51–99

Macroalgae 18.4 17.2

Detritus 57.1 56–100
Phytoplankton 44.5 59–99

Mangrove 53.9 37–97

Mangrove 13.3 9.5

Detritus 89.4 1–98
Phytoplankton 83.7 27–89

Macroalgae 70.2 26–86

Consumers

Bivalves 22.1 7.9

Gasteropods 80.2 32–100
Shrimps 54.1 23–81

Zooplankton 37.3 12–66
Crabs 48.5 22–75
Fishes 43.3 33–57

Gasteropods 2.0 7.3

Bivalves 22.3 5–61
Shrimps 6.1 0–23

Zooplankton 14.7 1–58
Crabs 2.2 0–13
Fishes 10.3 3–24

Shrimps 18.7 13.5

Bivalves 62.1 31–91
Gasteropods 38.6 0–98
Zooplankton 45.4 11–90

Crabs 52.6 24–83
Fishes 53.3 33–76

Zooplankton 14.5 10.4

Bivalves 54.1 14–93
Gasteropods 55.1 2–100

Shrimps 33.1 7–74
Crabs 19.7 1–66
Fishes 36.4 20–65

Crabs 31.6 17.9

Bivalves 74.4 42–99
Gasteropods 19.5 0–98

Shrimps 76.2 43–98
Zooplankton 33.7 2–91

Fishes 58.2 43–85

Fishes 175.9 29.6

Bivalves 98.6 95–100
Gasteropods 96.9 70–100

Shrimps 97.4 80–100
Zooplankton 92.4 71–100

Crabs 90.1 73–99
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Table 2. Cont.

Category Group TA SEAC
Mean Overlap Probability

(%)
95% CI

Feeding
guild

Detritivores 66.6 22.6

Herbivores 97.1 70–100
Planktivores 80.4 64–92
Omnivores 78.2 65–90

Carnivores 1 91.4 77–99
Carnivores 2 82.9 65–95
Carnivores 3 77 62–89

Herbivores 2.1 2.7
Detritivores 18.8 6–41
Planktivores 10.9 4–23
Omnivores 8.5 2–22

Carnivores 1 11.7 2–31
Carnivores 2 10.6 3–25
Carnivores 3 7.4 2–18

Planktivore 68.9 20.8 Detritivores 81 65–92
Herbivores 95.4 66–100
Omnivores 67.1 56–79

Carnivores 1 93.5 84–99
Carnivores 2 90.8 80–98
Carnivores 3 88.7 80–95

Omnivores 135.7 30.7 Detritivores 95.1 88–99
Herbivores 95.2 59–100

Planktivores 92.7 86–98
Carnivores 1 93.5 84–99
Carnivores 2 94.4 85–99
Carnivores 3 93.6 87–98

Carnivores 1 74.6 20.63 Detritivores 66.3 48–85
Herbivores 82.9 27–100

Planktivores 76.5 63–90
Omnivores 52.2 37–69

Carnivores 2 74.7 57–91
Carnivores 3 66.9 51–82

Carnivores 2 72.4 21.3 Detritivores 86.3 69–97
Herbivores 95.1 62–100

Planktivores 92.2 82–99
Omnivores 75.3 59–89

Carnivores 1 93 80–99
Carnivores 3 90.4 79–98

Carnivores 3 11.5.1 22.9 Detritivores 85.3 70–95
Herbivores 86.9 39–100

Planktivores 90.2 82–96
Omnivores 78.2 67–89

Carnivores 1 84.9 70–96
Carnivores 2 90.9 80–98

3.3. Trophic Position (TP) and Food Web Structure

Through the combination of analysis of stomach contents analysis, stable isotopes, and Bayesian

mixing model of stable isotopes, the structure and trophic position of the food chain in this system was

elaborated. Isotopic values of δ13C and δ15N allowed the estimation of five trophic levels (Figure 5).
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Figure 5. Trophic structure from the Teacapan wetland: The thickness of trophic links indicates the

importance of that preys’ contribution.

In the wetland of Teacapan, a large number of first order consumers exist who prey on the

different primary producers. Four primary sources were identified supporting different trophic chains:

Phytoplankton, detritus/seston, algae, and mangroves.

Phytoplankton is preyed upon by zooplankton, bivalves, and fish species such as sardines and

anchovies. Detritus/seston are the basis for a food chain, which includes different primary consumers

such as zooplankton, polychaetas, shrimps, crabs, and fish such tilapia and milkfish. This trophic chain

is specially established in the roots of the mangroves. Macroalgae are the basis of another trophic

chain composed at the basis by snails and some fish species such as the Pacific fat sleeper and mullets.

Mangroves are directly consumed only by some species of crabs and polychaetas, although this does

not constitute an important part of their diet. Most of these primary consumers have a TP below 2.

The former trophic chains get lost at the secondary and tertiary consumer level, as these predators’

prey on a broad range of prey items and from different TP, thus increasing the complexity of the

trophic chain in the system because of all the links and connections. In these TP there are some

macroinvertebrates species and most of the fish species. In these levels, many species are omnivores

such as crabs, shrimps, mullets, and mojarras preying on primary producers and also on first order

consumers such as polychaeta and benthic mollusks. Omnivore species did not show a predominant

food source, however, for this group primary producers had a significant contribution. In top predators

(TP 3 and above) it is not possible to discern the sources of their trophic spectrum, as these organisms’

prey upon a large diversity of organisms.

Species that connect the primary producers to top trophic levels, and that can, therefore,

be considered as keystone species were shrimps and crabs, connecting the benthos with the upper levels,

whilst zooplankton, sardines, and bivalves connected the phytoplankton with the top trophic levels.

4. Discussion

Previous studies have already pointed out the high levels of primary productivity of wetlands

with mangrove forests [41], and their importance as a primary food source supporting the food web in

these ecosystems [5]. Since then, there have been studies reporting the importance of mangroves as
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the basis of coastal fish populations [42], while others reported that other primary producers, such as

microphytobenthos, seagrass, and phytoplankton were more important primary food sources for

mangrove fish communities [19,43–45]. However, none of the previously mentioned works have been

undertaken in the gulf of California. These kinds of studies are needed to assess the role of different

primary producers in supporting tropical wetland food chains with a high density of mangrove forests

in the poorly studied wetlands of the gulf of California and Mexican pacific.

The complexity of the trophic structure of estuarine systems in the region has already been

reported [4,35], however, no such studies exist for Marismas Nacionales complex of brine coastal

lagoons, mangroves, swamps, and ravines.

In this study, we determined trophic grouping of the estuarine system of Teacapan (northern

part of Marismas Nacionales complex) based on a combination of both stable isotopes and stomach

contents analysis.

4.1. Feeding Habits

The SCA permitted an initial glimpse of the food web in the system, allowing us to identify

groups of predators, and determine if the feeding guilds assigned a priori, corresponded to the actual

feeding behavior of all the species analyzed. The only true herbivore was an alga feeding gastropod.

Planktivorous species ate both phyto and zooplankton, although zooplankton species such as copepods

and fish larvae ate predominantly phytoplankton, while others preyed as well on detritus and seston

(polychaetas, milkfish, anchovies, and mullets). All the macroinvertebrates and a large amount of

fish preyed on a suite of prey items including detritus, fish larvae, infaunal crustaceans, and benthic

invertebrates. All these species, including the planktivorous and the a priori considered seston and

detritus eaters, could be considered as omnivores, which were the majority of the species in the system.

This high diversity of prey in the stomach contents probably match the diversity of available preys

in this type of estuarine system [46]. It had been stated that dominant species adapted to estuarine

systems are found together in great abundance in a restricted area, so there is a high overlap of

diets when sharing a similar prey [47–49]. These species occupy a few trophic niches and therefore

exploit a common set of resources, which causes a high overlap of species as recorded in this study.

However, dietary overlap does not necessarily imply trophic competition, in this type of mangrove

estuarine ecosystem there is a great abundance of resources that trophic competition between them is

unlikely [50–52]. The success of the omnivore strategy against other feeding strategies is based on a

broad dietary flexibility, which allows them to adjust possible fluctuations in the environment and

therefore in resources. This strategy allows a very similar species to be found in a habitat occupying

different trophic positions [53,54] as observed in some species in our area of study, for example,

Diapterus peruvianus and M. curema in estuarine areas feed mainly on detritus, whereas in marine areas

their diet can change to omnivores [55,56].

Only fish species were true carnivores, and therefore placed at the top of the food chain in the

estuarine system. These were a trophically diverse group, encompassing species of different sizes and

diverse feeding strategies, as reported in other studies [6,46,52]. These top predators preyed on other

fish (both pelagic and demersal), shrimps, and crabs as these species are usually the most abundant in

estuarine and coastal ecosystems [57].

4.2. Isotopic Niche

The concept of ecological niche [58] has been embraced in isotopic ecology as isotope niche,

since stable isotopes vary with aspects of the diet and habitat of consumers over time [59].

Isotopic variation within and between individuals of the same species or population reflects the

amplitude of the isotope [10,59,60]. Therefore, the data of several organisms can give an estimate of

the amplitude of the isotope niche at the population level.

The studied wetland system is characterized by a variety of sources of organic matter due to the

input of subsidies by the surrounding environment and its high in situ production [61]. These sources



Water 2020, 12, 3105 13 of 18

varied not only spatially but temporally in terms of quantity and quality concerning their isotopic

composition. This large variability of resources is one of the major problems for the analysis of trophic

studies since it complicates their direct use as indicators of δ13Cbase and δ15Nbase to estimate the

Trophic Position for consumers. However, this was not reflected in the studied wetland, since when

comparing the isotopic signals of the organisms at different times of the year (rainy and dry) no

significant differences were found between them.

Seasonal variation in the estuarine isotopic signatures is mainly related to the seasonal changes:

When the fluvial contributions are stronger, it is expected that the terrestrial POM poor in δ13C

influences the isotopic signatures of the estuarine species [62]. This wetland registers large fluvial

contributions during the rainy season, therefore, significant changes were expected in the isotopic

signatures of the primary producers and consumers, however, the seasonal differences were not

pronounced enough to produce significant differences in the isotopic signatures of the various species

between rain and drought seasons. Other authors showed that even in conditions of low fluvial

contribution, the influence of the terrestrial POM is remarkable up to 30 km from the mouth of the

river, which means that the POM of seawater enriched in δ13C probably does not have a great influence

on the isotopic signatures of this estuary [61]. This is probably happening in this wetland.

Mangrove leaves and detritus were the most depleted in δ13C among the sources of primary

producers analyzed, and its average δ13C values were close to those found in many mangrove

ecosystems studies [31,63,64]. Except for benthic algae, primary producers in estuarine ecosystems

generally exhibited low δ13C values.

The large isotopic niches found in this work indicate that macroinvertebrates and fish in this

wetland use heterogeneous diets, which comprise a wide variety of food sources with different isotopic

values, causing, a high isotopic overlap.

4.3. Trophic Position (TP) and Food Web Structure

In different studies, to determine the trophic structure of the species public databases such as

FishBase are frequently used, however, this information may be strongly biased [35], in part because in

estuarine systems such as Teacapan fish tend to be shorter than compared to those reported in this

type of database. For this reason, in this investigation the trophic positions of the organisms were

determined based on the results obtained with stable isotopes and stomach contents analysis.

It was possible to build a general model for the trophic network of this wetland from trophic

links suggested by the analysis of stomach contents, stable isotopes, and the isotopic mixture model,

where the main trophic chains that transport energy from the primary producers are represented.

However, it is important to remark that the true food web is a more complex version than the one

documented here.

Of our described trophic network, five trophic levels were identified, the first consisting of

primary producers (seston, phytoplankton, macroalgae, detritus, and mangrove), the second by

first-order consumers eating mainly detritus/seston and plankton in a lesser extent, the third level

consisting of omnivorous species, the fourth trophic level formed by carnivorous species of first

(macrobentophagous) and second order (piscivores), and the fifth level represented by a single species

of corvine that is the top predator of the trophic network.

Detritus and particulate organic matter were grouped into a single source because other authors

have reported that mangrove detritus has a greater than 50% contribution to particulate organic matter

(POM) [10]. This possibly explains the unexpected coupling of the benthic and pelagic components as

observed in the isotopic analyses.

Two main trophic chains were identified, the first one based on estuarine phytoplankton.

This planktonic food chain transports energy from these suspended producers to small planktonic

organisms such as zooplankton, as well as to macroinvertebrates such as bivalves (Mytella sp.) and some

species of fish such as sardines (Ophistonema libertate); these species in turn contribute to the diet of fish of

higher levels. Another trophic route based on detritus transports energy to detritivorous invertebrates
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such as polychaetes, crustaceans, and some fish such as tilapia (Oreochromis aureus), sleeper (Dormitator

latifrons), and mojarra (Diapterus peruvianus), which in turn are consumed by macrobenthic carnivores

(trophic level 3, Cathorops fuerthii and Pomadasys macracanthus), by second order carnivores (Centropomus

robalito and Ariops seemanni), and third order (Caranx caninus, Lutjanus argentiventris, and Cynoscion

xanthulus). There are other minor chains such as the benthic macroalgae that transport energy in less

quantity by being part of the diet of some fish such as mullets (M. curema and M. cephalus), which in

turn serve as an important part of the diet of the main piscivores (trophic levels 4 and 5: Caranx caninus,

Lutjanus argentiventris, and Cynoscion xanthulus) (Figure 4). The contribution of the mangrove directly

to the trophic chain is practically null, although it is consumed by polychaetes and some crabs in

low proportion.

Since frequently different sources had a similar isotope composition, clear trophic links could

not be traced for most species, mainly from upper trophic levels. Therefore, several combinations

of potential sources can explain stable isotope values of the piscivores. However, in lower trophic

levels it was possible to identify relative trophic links, for example, bivalve mollusks (Mytella sp.) and

sardine (Ophistonema libertate) showed very strong trophic connections to phytoplankton, anchovy

(Cetengraulis mysticetus) is strongly linked to the isotopic signal of zooplankton (copepods) and the

isotopic composition of detritus is strongly linked to species such as tilapia (Oreochromis aureus),

milkfish (Chanos chanos), and polychaetes, which suggests an important dependence on these sources.

4.4. Importance of the Contribution of Mangroves

The role of mangroves as a potential source of food has been discussed for a long time [41].

While some studies show that mangrove organic matter provides important nutrition to aquatic

communities [10–14], other studies do not show a strong nutritional linkage between mangroves and

consumers. There have been several attempts to compare interlinked mangrove, seagrass, and mudflat

food webs through stable isotope analysis that have highlighted the low importance of mangrove litter

as a food source for fish [16,20,21].

As previously stated, the main source of detritus is mangrove [10], and in our study the

recorded average δ13C for mangroves (−26.5%� on average) and detritus (−23.9%�) were very similar.

Therefore, considering that the detritus was the base of an important trophic route in this system,

mangrove contribution in this system is very important through the consumption of detritus released

from the mangrove. This highlights the importance of the mangrove forests in this ecosystem,

because besides being an important base of the food chain, they play, an important role in this

ecosystem. The utilization of mangrove resource as feeding ground can be influenced by access and

residency of organisms within the ecosystems [65], by different tidal ranges [43], mangrove setting [19],

nutrient concentration according to seasonal changes [66], and presence of other coastal habitats as

potential primary producers [16]. In the case of Teacapan, the mangrove presented the greatest overlap

of isotopic niche with the detritus of the primary sources analyzed, therefore it can be deduced that

the carbon coming from the mangroves in the form of detritus is an important carbon source for the

food web; this is similar to what was reported in a study of aquatic consumers in a Biosphere Reserve

in Southeastern México [29]. This might be due to the absence of more labile carbon sources such as

seagrass or phytoplankton. Furthermore, the leaf litter productivity in mangroves persist throughout

the year contrary to the algae or phytoplankton that occur only under the favorable environmental

conditions. This wetland serves as a feeding ground mostly for mollusks, crabs, and fish, which reside

permanently there and have direct access to the mangrove forests. In addition, these ecosystems serve

as refugia for invertebrates and fish, and create substrate for a diversity of primary producers and

consumers, thereby playing an important indirect role to the food web of these systems.

Due to the isotopic proportions that the primary producers show, it can be assumed that detritus

is the main source that supports the food chain of Teacapan; however, an absolute conclusion cannot

be drawn because for logistical reasons it was not possible to sample all the possible sources of the



Water 2020, 12, 3105 15 of 18

system. In general, there is no homogenous mangrove derived detritus food web but rather a diverse

food web that supports the biomass of consumers.

5. Conclusions

This study further demonstrates the relative importance of various primary producers as organic

matter sources supporting the diverse fish and invertebrate community in Teacapan estuary, and also

points at the importance of mangroves for sustaining the food web in such ecosystems. There is a high

level of diet overlap between different groups. Both fish and invertebrate appear to depend differently

on different primary producers available, although mathe mangrove appear to be the most important

primary source. The invertebrates had heterogeneous diets and many fish and macroinvertebrates

fed on the mangrove detritus with few mangrove inhabitants such as polychaetes and grapsid crabs

directly feeding on the mangrove leaves, which presents a low contribution to their diet; however,

more studies are needed to give a more precise conclusion. Due to the ecological importance of wetlands

with mangrove ecosystems, their proper management is necessary to conserve these ecosystems and

ensure the maintenance of coastal fisheries, because most of the species collected in this study of

macroinvertebrates and fish are of economic importance. The trophic position of the individual species

and the general trophic structure of the community provide important tools to monitor the effects of

human impacts, climate change, and the persistence and resilience of food webs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/11/3105/s1.

Table S1: Feeding strategy, food items, isotopic composition of δ13C and δ15N values (%�, mean ±SD), and trophic
position (TP) of the composite samples of seston, detritus, primary producers and main consumer species, and fish
collected at the wetland of Teacapán. N = number of samples. A% = relative abundance. B% = relative biomass.
The organisms marked with “*” were used for the construction of the trophic network.

Author Contributions: Conceptualization, V.M.M.-T., F.A., and M.S.-J.; methodology, V.M.M.-T., F.A., and M.S.-J.;
software, V.M.M.-T., F.A., M.S.-J., and L.G.; validation, V.M.M.-T., F.A., and M.S.-J.; formal analysis, V.M.M.-T.,
F.A., and L.G.; investigation, V.M.M.-T. and F.A.; resources, V.M.M.-T., F.A., and M.S.-J.; data curation, V.M.M.-T.,
J.R., and L.G.; writing—original draft preparation, F.A., V.M.M.-T., J.R., E.F.B., E.S.-Z., and L.G.; writing—review
and editing, F.A., V.M.M.-T., J.R., E.F.B., E.S.-Z., and L.G.; visualization, F.A.; supervision, F.A. and M.S.-J.;
project administration, F.A.; funding acquisition, V.M.M.-T., F.A., and M.S.-J. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by projects PAPIIT-UNAM IN217408 and IN215206.

Acknowledgments: We thank all the students and personnel who helped with the process and analysis of data.
V.M. Muro-Torres thanks CONACYT for the Ph.D. grant.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Campos-Silva, J.V.; Peres, C.A. Community-based management induces rapid recovery of a high-value

tropical freshwater fishery. Sci. Rep. 2016, 6, 1–13. [CrossRef]

2. Nagelkerken, I.; Blaber, S.J.M.; Bouillon, S.; Green, P.; Haywood, M.; Kirton, L.G.; Meynecke, J.O.; Pawlik, J.;

Penrose, H.M.; Sasekumar, A.; et al. The habitat function of mangroves for terrestrial and marine fauna:

A review. Aquat. Bot. 2008, 89, 155–185. [CrossRef]

3. Alongi, D.M. Carbon cycling and storage in mangrove forests. Annu. Rev. Mar. Sci. 2014, 6, 195–219.

[CrossRef] [PubMed]

4. Muro-Torres, V.M.; Soto-Jiménez, M.F.; Green, L.; Quintero, J.; Amezcua, F. Food web structure of a subtropical

coastal lagoon. Aquat. Ecol. 2019, 53, 407–430. [CrossRef]

5. Odum, W.E.; Heald, E.J. The detritus-based food web of an estuarine mangrove community. Estuar. Res.

Chem. Biol. Estuar. Syst. 1975, 1, 265–268.

6. Robertson, A.I.; Duke, N.C. Mangroves as nursery sites of fish and crustaceans in mangrove and other

nearshore habitats in tropical Australia. Mar. Biol. 1987, 96, 193–205. [CrossRef]

http://www.mdpi.com/2073-4441/12/11/3105/s1
http://dx.doi.org/10.1038/srep34745
http://dx.doi.org/10.1016/j.aquabot.2007.12.007
http://dx.doi.org/10.1146/annurev-marine-010213-135020
http://www.ncbi.nlm.nih.gov/pubmed/24405426
http://dx.doi.org/10.1007/s10452-019-09698-0
http://dx.doi.org/10.1007/BF00427019


Water 2020, 12, 3105 16 of 18

7. Robertson, A.I.; Blaber, S.J.M. Plankton, Epibenthos and Fish Communities. In Tropical Mangrove Ecosystems;

Robertson, A.I., Alongi, D.M., Eds.; American Geophysical Union: Washington, DC, USA, 2007; Volume 41,

pp. 173–224. [CrossRef]

8. Laegdsgaard, P.; Johnson, C. Why do juvenile fish utilize mangrove habitats? J. Exp. Mar. Biol. Ecol.

2001, 25, 229–253. [CrossRef]

9. Blaber, S.J.M.; Cyrus, D.P.; Albaret, J.J.; Ching, C.V.; Day, J.W.; Elliott, M.; Fonseca, M.S.; Hoss, D.E.;

Orensanz, J.; Potter, I.C.; et al. Effects of fishing on the structure, functioning of estuarine, and nearshore

ecosystems. ICES J. Mar. Sci. 2000, 57, 590–602. [CrossRef]

10. Hadwen, W.L.; Russell, G.L.; Arthington, A.H. Gut content-and stable isotope derived diets of four

commercially and recreationally important fish species in two intermittently open estuaries. Mar. Freshw. Res.

2007, 58, 363–375. [CrossRef]

11. Abrantes, K.G.; Sheaves, M. Incorporation of terrestrial wetland material into aquatic food webs in a tropical

estuarine wetland. Estuar. Coast. Shelf Sci. 2008, 80, 401–412. [CrossRef]

12. Giarrizzo, T.; Schwamborn, R.; Saint-Paul, U. Utilization of carbon sources in a northern Brazilian mangrove

ecosystem. Estuar. Coast. Shelf Sci. 2011, 95, 447–457. [CrossRef]

13. Zagars, M.; Ikejima, K.; Kasai, A.; Arai, N.; Tongnunui, P. Trophic characteristics of a mangrove fish

community in Southwest Thailand: Important mangrove contribution and intraspecies feeding variability.

Estuar. Coast. Shelf Sci. 2013, 119, 145–152. [CrossRef]

14. Abrantes, K.G.; Johnston, R.; Connolly, R.M.; Sheaves, M. Importance of mangrove carbon for aquatic food

webs in wet-dry tropical estuaries. Estuar. Coast. 2015, 38, 383–399. [CrossRef]

15. Rodelli, M.R.; Gearing, J.N.; Gearing, P.J.; Marshall, N.; Sasekumar, A. Stable isotope ratio as a tracer of

mangrove carbon in Malaysian ecosystems. Oecologia 1984, 61, 326–333. [CrossRef]

16. Marguillier, S.; van der Velde, G.; Dehairs, F.; Hemminga, M.; Rajagopal, S. Trophic relationships in an

interlinked mangrove-seagrass ecosystem as traced by δ13C and δ15N. Mar. Ecol. Prog. Ser. 1992, 151, 115–121.

[CrossRef]

17. Bouillon, S.; Raman, A.V.; Dauby, P.; Dehairs, F. Carbon and nitrogen stable isotope ratios of subtidal

benthic invertebrates in an estuarine mangrove ecosystem (Andhra Pradesh, India). Estuar. Coast. Shelf Sci.

2002, 54, 901–913. [CrossRef]

18. Sheridan, P.; Hays, C. Are mangroves nursery habitat for transient fishes and decapods? Wetlands

2003, 23, 449–458. [CrossRef]

19. Nagelkerken, I.; Van Der Velde, G. Are Caribbean mangroves important feeding grounds for juvenile reef

fish from adjacent seagrass beds? Mar. Ecol. Prog. Ser. 2004, 274, 143–151. [CrossRef]

20. Kruitwagen, G.; Nagelkerken, I.; Lugendo, B.R.; Mgaya, Y.D.; Bonga, S.E. Importance of different carbon

sources for macroinvertebrates and fishes of an interlinked mangrove-mudflat ecosystem (Tanzania).

Estuar. Coast. Shelf Sci. 2010, 88, 464–472. [CrossRef]

21. Igulu, M.M.; Nagelkerken, I.; van der Velde, G.; Mgaya, Y.D. Mangrove fish production is largely fuelled by

external food sources: A stable isotope analysis of fishes at the individual, species, and community levels

from across the globe. Ecosystems 2013, 16, 1336–1352. [CrossRef]

22. Chong, V.C.; Low, C.B.; Ichikawa, T. Contribution of mangrove detritus to juvenile prawn nutrition: A dual

stable isotope study in a Malaysian mangrove forest. Mar. Biol. 2001, 138, 77–86. [CrossRef]

23. Lee, S.Y. Exchange of organic matter and nutrients between mangroves and estuaries: Myths, methodological

issues and missing links. Int. J. Environ. Sci. Technol. 2005, 31, 163–175.

24. Kristensen, D.K.; Kristensen, E.; Mangion, P. Food partitioning of leaf-eating mangrove crabs (Sesarminae):

Experimental and stable isotope (13C and 15N) evidence. Estuar. Coast. Shelf Sci. 2010, 87, 583–590.

[CrossRef]

25. Bui, T.H.H.; Lee, S.Y. Does ‘you are what you eat’ apply to mangrove grapsid crabs? PLoS ONE

2014, 9, e89074.[CrossRef]

26. Zetina Rejón, M.J.; Cabrera-Neri, E.; López-Ibarra, G.A.; Arcos-Huitrón, N.E.; Christensen, V.

Trophic modeling of the continental shelf ecosystem outside of Tabasco, Mexico: A network and modularity

analysis. Ecol. Model. 2015, 313, 314–324. [CrossRef]

27. Ruelas-Inzunza, J.R.; Páez-Osuna, F. Trophic distribution of Cd, Pb and Zn in a food web from Altata-Ensenada

del Pabellón subtropical lagoon, SE Gulf of California. Arch. Environ. Con. Toxicol. 2008, 54, 584–596.

[CrossRef]

http://dx.doi.org/10.1029/CE041p0173
http://dx.doi.org/10.1016/S0022-0981(00)00331-2
http://dx.doi.org/10.1006/jmsc.2000.0723
http://dx.doi.org/10.1071/MF06157
http://dx.doi.org/10.1016/j.ecss.2008.09.009
http://dx.doi.org/10.1016/j.ecss.2011.10.018
http://dx.doi.org/10.1016/j.ecss.2013.01.005
http://dx.doi.org/10.1007/s12237-014-9817-2
http://dx.doi.org/10.1007/BF00379629
http://dx.doi.org/10.3354/meps151115
http://dx.doi.org/10.1006/ecss.2001.0864
http://dx.doi.org/10.1672/19-20
http://dx.doi.org/10.3354/meps274143
http://dx.doi.org/10.1016/j.ecss.2010.05.002
http://dx.doi.org/10.1007/s10021-013-9687-7
http://dx.doi.org/10.1007/s002270000434
http://dx.doi.org/10.1016/j.ecss.2010.02.016
http://dx.doi.org/10.1371/journal.pone.0089074
http://dx.doi.org/10.1016/j.ecolmodel.2015.07.001
http://dx.doi.org/10.1007/s00244-007-9075-4


Water 2020, 12, 3105 17 of 18

28. Jara-Marini, M.E.; Soto-Jiménez, M.F.; Páez-Osuna, F. Mercury transfer in a subtropical coastal lagoon food

web (SE Gulf of California) under two contrasting climatic condition. Environ. Toxicol. 2011, 30, 1611–1617.

[CrossRef] [PubMed]

29. Mendoza-Carranza, M.; Hoeinghau, D.J.; Garcia, A.M.; Romero-Rodriguez, A.M. Aquatic food webs

in mangrove and seagrass habitats of Centla Wetland, a Biosphere Reserve in Southeastern Mexico.

Neotrop. Ichthyol. 2010, 8, 171–178. [CrossRef]

30. Jara-Marini, M.E.; Páez-Osuna, F.; Soto-Jiménez, M. Trophic Relationships Within a Subtropical Estuarine

Food Web from the Southeast Gulf of California through Analysis of Stable Isotopes of Carbon and Nitrogen.

In Fisheries Management of Mexican and Central American Estuaries; Amezcua, F., Bellgraph, B., Eds.; Springer:

Berlin/Heidelberg, Germany, 2014; pp. 69–79. [CrossRef]

31. Thimdee, W.; Deein, G.; Sangrungruang, C.; Matsunaga, K. Analysis of primary food sources and trophic

relationships of aquatic animals in a mangrove-fringed estuary, Khung Krabaen Bay (Thailand) using dual

stable isotope techniques. Wetl. Ecol. Manag. 2004, 12, 135–144. [CrossRef]

32. Pinkas, L.; Oliphant, S.M.; Iverson, I.L.K. Food habits of albacore, bluefin tuna, and bonito in California

waters. Fish Bulletin 1971, 152, 1–105.

33. Cortes, E. A critical review of methods of studying fish feeding based on analysis of stomach contents:

Application to elasmobranch fishes. Can. J. Fish. Aquat. Sci. 1997, 54, 726–738. [CrossRef]

34. Post, D.M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology

2002, 83, 703–718. [CrossRef]

35. Amezcua, F.; Muro-Torres, V.; Soto-Jiménez, M.F. Stable isotope analysis versus TROPH: A comparison of

methods for estimating fish trophic positions in a subtropical estuarine system. Aquat. Ecol. 2015, 49, 235–250.

[CrossRef]

36. Minagawa, M.; Wada, E. Stepwise enrichment of N-15 along food-chains further evidence and the relation

between delta-N-15 and animal age. Geochim. Cosmochim. 1984, 48, 1135–1140. [CrossRef]

37. Parnell, A.C.; Inger, R.; Bearhop, S.; Jackson, A.L. Source partitioning using stable isotopes: Coping with too

much variation. PLoS ONE 2010, 5, e9672. [CrossRef] [PubMed]

38. Layman, C.A.; Arrington, D.A.; Montaña, C.G.; Post, D.M. Can stable isotope ratios provide quantitative

measures of trophic diversity within food webs? Ecology 2007, 88, 42–48. [CrossRef]

39. Jackson, A.L.; Inger, R.; Parnell, A.C.; Bearhop, S. Comparing isotopic niche widths among and within

communities: SIBER stable isotope Bayesian ellipses in R. J. Anim. Ecol. 2011, 80, 595–602. [CrossRef]

40. Swanson, H.K.; Lysy, M.; Power, M.; Stasko, A.D.; Johnson, J.D.; Reist, J.D. A new probabilistic method for

quantifying n-dimensional ecological niches and niche overlap. Ecology 2015, 96, 318–324. [CrossRef]

41. Bouillon, S.; Connolly, R.M.; Lee, S.Y. Organic matter exchange and cycling in mangrove ecosystems:

Recent insights from stable isotope studies. J. Sea Res. 2008, 59, 44–58. [CrossRef]

42. Chong, V.C. Mangroves-fisheries linkages—The Malaysian perspective. Bull. Mar. Sci. 2007, 80, 755–772.

43. Heithaus, E.R.; Heithaus, P.A.; Heithaus, M.R.; Burkholder, D.; Layman, C.A. Trophic dynamics in a relatively

pristine subtropical fringing mangrove community. Mar. Ecol. Prog. Ser. 2011, 428, 49–61. [CrossRef]

44. Lugendo, B.R.; Nagelkerken, I.; Van Der Velde, G.; Mgaya, Y.D. The importance of mangroves, mud and

sand flats, and seagrass beds as feeding areas for juvenile fishes in Chwaka Bay, Zanzibar: Gut content and

stable isotope analyses. J. Fish Biol. 2006, 69, 1639–1661. [CrossRef]

45. Robertson, A.I.; Alongi, D.M.; Boto, K.G. Food chains and carbon fluxes. Tropical mangrove Ecosystem 41.

Coast. Estuar. Stud. 1992. [CrossRef]

46. Gning, N.; Vidy, G.; Thiaw, O.T. Feeding ecology and ontogenic diet shifts of juvenile fish species in an

inverse estuary: The Sine-Saloum, Senegal. Estuar. Coast. Shelf Sci. 2008, 76, 395–403. [CrossRef]

47. Lafaille, P.; Lefeubvre, J.C.; Schricke, M.T.; Feuteun, E. Feeding ecology of 0-group sea bass, Dicentrarchus

labrax, in salt marshes of Mont Saint Michel Bay (France). Estuaries 2001, 24, 116–125. [CrossRef]

48. Gamito, S.; Pires, A.; Pita, C.; Erzini, K. Food availability and the feeding ecology of ichthyofauna of a Ria

Formosa (South Portugal). Water Reservoir Estuar. Coast. 2003, 26, 938–948. [CrossRef]

49. Salgado, J.P.; Cabral, H.N.; Costa, M.J. Feeding ecology of the gobies Pomatoschistus minutus (Pallas, 1770)

and Pomatoschistus microps (Kroyer, 1838) in the upper Tagus estuary, Portugal. Sci. Mar. 2004, 68, 425–434.

[CrossRef]

http://dx.doi.org/10.1002/tox.20670
http://www.ncbi.nlm.nih.gov/pubmed/21374782
http://dx.doi.org/10.1590/S1679-62252010000100020
http://dx.doi.org/10.1007/978-94-017-8917-2_5
http://dx.doi.org/10.1023/B:WETL.0000021674.76171.69
http://dx.doi.org/10.1139/f96-316
http://dx.doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
http://dx.doi.org/10.1007/s10452-015-9517-4
http://dx.doi.org/10.1016/0016-7037(84)90204-7
http://dx.doi.org/10.1371/journal.pone.0009672
http://www.ncbi.nlm.nih.gov/pubmed/20300637
http://dx.doi.org/10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2
http://dx.doi.org/10.1111/j.1365-2656.2011.01806.x
http://dx.doi.org/10.1890/14-0235.1
http://dx.doi.org/10.1016/j.seares.2007.05.001
http://dx.doi.org/10.3354/meps09052
http://dx.doi.org/10.1111/j.1095-8649.2006.01231.x
http://dx.doi.org/10.1029/CE041p0293
http://dx.doi.org/10.1016/j.ecss.2007.07.018
http://dx.doi.org/10.2307/1352818
http://dx.doi.org/10.1007/BF02803352
http://dx.doi.org/10.3989/scimar.2004.68n3425


Water 2020, 12, 3105 18 of 18

50. Amara, R.; Laffargue, P.; Dewarumez, J.M.; Maryniak, C.; Lagardère, F.; Luczac, C. Feeding ecology and

growth of 0-group flatfish (sole, dab and plaice) on a nursery ground (Southern Bight of the North Sea).

J. Fish. Biol. 2001, 58, 788–803. [CrossRef]

51. Sá, R.; Bexiga, C.; Veiga, P.; Vieira, L.; Erzini, K. Feeding ecology and trophic relationships of fish species in

the lower Guadiana river estuary and Castro Marim e Vila Real de Santo Antonio saltmarsh. Estuar. Coast.

Shelf Sci. 2006, 70, 19–26. [CrossRef]

52. Pasquaud, S.; Elie, P.; Jeantet, C.; Billy, I.; Martinez, P.; Girardin, M. A preliminary investigation of the fish

food web in the Gironde estuary, France, using dietary and stable isotope analyses. Estuar. Coast. Shelf Sci.

2008, 78, 267–279. [CrossRef]

53. Hobson, K.A. Trophic relationships among high Arctic seabirds: Insights from tissue-dependent stable-isotope

models. Mar. Ecol. Prog. Ser. 1993, 95, 7–18. [CrossRef]

54. Gurney, L.J.; Froneman, P.W.; Pakhomov, E.A.; Mc Quaid, C.D. Trophic positions of three euphausiid species

from the Prince Edward Islands (Southern Ocean): Implication for the pelagic food web structure. Mar. Ecol.

Prog. Ser. 2001, 217, 67–174. [CrossRef]

55. Bearhop, S.; Adams, C.E.; Waldron, S.; Fuller, R.A.; Susan, E.A.; Fullert, R.A.; Macleodj, H. Determining

trophic niche width: A novel approach using stable isotope analysis. J. Anim. Ecol. 2004, 73, 1007–1012.

[CrossRef]

56. Matthews, B.; Mazumder, A. A critical evaluation of intrapopulation variation of δ13C and isotopic evidence

of individual specialization. Oecologia 2004, 140, 361–371. [CrossRef] [PubMed]

57. Hutchinson, G.E. Population studies: Animal ecology and demography. Bull. Math. Biol. 1991, 53, 193–213.

[CrossRef]

58. Newsome, S.D.; Tinker, M.T.; Monson, D.H.; Oftedal, O.T.; Ralls, K.; Staedler, M.M.; Fogel, M.L.; Estes, J.A.

Using stable isotopes to investigate individual diet specialization in California sea otters (Enhydra lutris

nereis). Ecology 2009, 90, 961–974. [CrossRef]

59. Newsome, S.D.; Martinez del Rio, C.; Bearhop, S.; Phillips, D.L. A niche for isotopic ecology. Front. Ecol.

Environ. 2007, 5, 429–436. [CrossRef]

60. Valdez-Hernández, J.I.; Ruiz-Luna, A.; Guzmán-Arroyo, M.; González-Farias, F.; Acosta-Velázquez, J.;

Vázquez-Lule, A.D. Characterization of the Teacapán mangrove site—Agua Brava—Marismas Nacionales,

Sinaloa—Nayarit. In Mangrove Sites with Biological Relevance and Ecological Rehabilitation Needs;

National Commission for the Knowledge and Use of Biodiversity (CONABIO): Mexico City, Mexico, 2009.

61. Vinagre, C.; Salgado, J.; Costa, M.J.; Cabral, H.N. Nursery fidelity, food web interactions and primary sources

of nutrition of the juveniles of Solea solea and S. senegalensis in the Tagus estuary (Portugal): A stable

isotope approach. Estuar. Coast. Shelf Sci. 2008, 76, 255–264. [CrossRef]

62. Newell, R.I.E.; Marshall, N.; Sasekumar, A.; Chong, V.C. Relative importance of benthic microalgae,

phytoplankton, and mangroves as sources of nutrition for penaeid prawns and other coastal invertebrates

from Malaysia. Mar. Biol. 1995, 123, 595–606. [CrossRef]

63. Schwamborn, R.; Ekau, W.; Voss, M.; Saint-Paul, U. How important are mangroves as a carbon source for

decapod crustacean larvae in a tropical estuary? Estuar. Coast. Shelf Sci. 2002, 229, 195–205. [CrossRef]

64. Tue, N.T.; Hamaoka, H.; Sogabe, A.; Quy, T.D.; Nhuan, M.T.; Omori, K. Food sources of macro-invertebrates

in an important mangrove ecosystem of Vietnam determined by dual stable isotope signatures. J. Sea Res.

2012, 72, 14–21. [CrossRef]

65. Fry, B.; Ewel, K.C. Using stable isotopes in mangrove fisheries research. Isot. Environ. Health Stud.

2003, 39, 191–196. [CrossRef] [PubMed]

66. Rajkumar, M.; Perumal, P.; Prabu, V.A.; Perumal, N.V.; Rajasekar, T. Phytoplankton diversity in Pichavaram

mangrove waters from the south-east coast of India. J. Environ. Biol. 2009, 30, 489–498. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.1095-8649.2001.tb00531.x
http://dx.doi.org/10.1016/j.ecss.2006.05.038
http://dx.doi.org/10.1016/j.ecss.2007.12.014
http://dx.doi.org/10.3354/meps095007
http://dx.doi.org/10.3354/meps217167
http://dx.doi.org/10.1111/j.0021-8790.2004.00861.x
http://dx.doi.org/10.1007/s00442-004-1579-2
http://www.ncbi.nlm.nih.gov/pubmed/15118902
http://dx.doi.org/10.1007/BF02464429
http://dx.doi.org/10.1890/07-1812.1
http://dx.doi.org/10.1890/1540-9295(2007)5[429:ANFIE]2.0.CO;2
http://dx.doi.org/10.1016/j.ecss.2007.07.006
http://dx.doi.org/10.1007/BF00349238
http://dx.doi.org/10.3354/meps229195
http://dx.doi.org/10.1016/j.seares.2012.05.006
http://dx.doi.org/10.1080/10256010310001601067
http://www.ncbi.nlm.nih.gov/pubmed/14521280
http://dx.doi.org/10.1371/journal.pone.0012437
http://www.ncbi.nlm.nih.gov/pubmed/20120485
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Sample Collection and Processing 
	Feeding Habits (Stomach Contents Analysis) 
	Stable Isotopes Analysis (SIA) 
	Trophic Position (TP) 
	Food Web Structure 

	Results 
	Feeding Habits 
	Isotopic Niche 
	Trophic Position (TP) and Food Web Structure 

	Discussion 
	Feeding Habits 
	Isotopic Niche 
	Trophic Position (TP) and Food Web Structure 
	Importance of the Contribution of Mangroves 

	Conclusions 
	References

