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Abstract: In recent years, many methods have been developed to calculate the trajectory of a robotic 9 
arm in the joint-space. These methods have many advantages, such as soft motion and infinite jerk 10 
avoidance. Nevertheless, these methods present other problems that must be avoided, such as un- 11 
natural motion while generating the trajectory and producing unsafe planning. In this sense, this 12 
work presents a numerical method named iterative optimal solution trajectory via (𝜁)!-homotopy 13 
former (IOSTV (𝜁)!-HF). It is proposed to reduce and avoid oscillation while getting trajectories 14 
with different shapes to perform better, reliable, smooth, and long-life robotic systems. The algo- 15 
rithm with the proposed method is described, and examples of the trajectories obtained with differ- 16 
ent parameters are presented. In addition, these were mapped and a trajectory with continuous ve- 17 
locity and a reduced oscillation and another trajectory with the same restrictions but with continu- 18 
ous acceleration and zero oscillations were shown; the method is versatile since it allows choosing 19 
and finding the most optimal solutions according to the application. Finally, the article ends with a 20 
critical discussion of the experimental results. 21 

Keywords: Homotopy; joint-space; moment function generation; trajectory; via point; velocity, ac- 22 
celeration, jerk, oscillation avoiding, Matlab. 23 
 24 

1. Introduction 25 
In recent decades, robot applications have been extensively studied [1], and numer- 26 

ous improvements have been developed [2]. These advances are becoming more robust 27 
today since they mainly focus on work with repetitive tasks to increase productivity, such 28 
as industrial applications [3, 4] and applications in the medical area [5]. Therefore,  robot 29 
arms (manipulators) must be precise to be used by these applications and many others 30 
[6]. Usually, these robots can work in dangerous environments, in places where humans 31 
cannot access to perform dangerous tasks [7]; at the same time, these robot arms must 32 
navigate obstacles because the environment of a robotic arm is often very complicated. 33 

For these reasons, the robotic arm's motion must be precise and fulfill some specific 34 
characteristics that are defined depending on the environment and the application. In ad- 35 
dition, it is necessary thoroughly study trajectories and kinematics (direct and inverse) to 36 
verify that the robotic arm does not show any complications while performing a motion 37 
[8]. For example, the most famous methods to calculate the trajectory of a robotic arm [9, 38 
10] are cubic polynomials [11], trapezoidal trajectory [12], and the Euler angles [10], to 39 
mention some. Besides, many studies, methods, algorithms, and designs (electronic and 40 
mechanical) help to obtain better performance in robotic arm motion [13, 14, 15, 16, 17, 18, 41 
19]. Nevertheless, some of these methods are complicated to implement. Others are feasi- 42 
ble in exhibiting unnatural motion, infinite jerk (third time derivative of position), or re- 43 
quire other resources, such as an optimal timing solution or specific PID (proportion-al- 44 
integral-derivative) control to generate the optimal trajectory. 45 
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For example, the LSPB method (Linear Segment with Parabolic Blends) has improved 46 
trajectory performance [20]. However, it requires more calculations. This is because the 47 
LSPB divides the trajectory into segments and may only sometimes produce the most op- 48 
timal solution in terms of executed time [21]. Also, using this method can result in unde- 49 
sirable acceleration profiles, limiting the flexibility of the resulting motion [22]. Concern- 50 
ing n-order polynomials also have some disadvantages; according to some authors [11, 51 
23, 24, 25], higher-order polynomials are more complex and may require more computa- 52 
tion to evaluate, which can be a drawback in real-time control systems. In addition, it 53 
presents local minima or maxima, which can lead to unexpected or undesired behavior if 54 
the trajectory is not carefully designed. Finally, this method may not be as flexible as other 55 
types of trajectories, such as splines, in accurately following the desired path. In summary, 56 
high-order polynomials must be carefully designed using other techniques to optimize 57 
this method.  58 

In another example, the authors in [26] present trajectories with a total time of 11 59 
seconds using a radial basis function (RBF) neural network. This method is reliable and 60 
an excellent option for performing motion planning. However, the trajectories present 61 
many big-long oscillations through time, which means greater energy consumption and 62 
unsafe motion planning to avoid collisions [27]. The 3-5-3 interpolation polynomial 63 
method presented in [28] has the same problem mentioned before in [26].  64 

Other works [29, 30, 31, 32] use numerical methods with homotopy continuation to 65 
generate optimal trajectories in manipulators. The authors mentioned that this approach 66 
is a favorable option for generating trajectories because these are versatile and fulfill the 67 
characteristics of the mechanical system. Other related works that use homotopic func- 68 
tions for optimal trajectory planning focus mainly on mobile robots [33], humanoid robots 69 
[34], dynamics, and control problems [35]. 70 

In previous work, a novel algorithm introduced in [36, 37] was presented as a trajec- 71 
tory planning approach with more characteristics that had not been mentioned before and 72 
others that had been overlooked. This algorithm generated homotopic trajectories that al- 73 
ways start in the specified start position and ends at the final point, generating enough 74 
iterations to make trajectories that go closer and closer to the desired via point each time. 75 
The algorithm generates the ideal trajectory (the trajectory that passes through the speci- 76 
fied via point) with infinite iterations and prelaminar parameters that determine the shape 77 
of the trajectory desired. However, a finite quantity of iterations gets an excellent approx- 78 
imation and can be as accurate as desired.  79 

Furthermore, the method proposed in this work makes it possible to obtain better 80 
trajectory performance by changing the shape of the velocity, acceleration, and jerk pro- 81 
files. In this sense, it has coined this algorithm with the name iterative optimal solution 82 
trajectory via (𝜁)!-homotopy former (IOSTV (𝜁)!-HF). In addition, with this algorithm, 83 
some of the disadvantages presented before are lost. For example, generating many op- 84 
tions for getting different trajectory shapes with the same initial, via, and final point makes 85 
it possible to obtain the best suitable trajectory for specific applications. Furthermore, the 86 
IOSTV-HF method is flexible because it always gets a trajectory that passes through these 87 
three points in a defined time, and many options can be generated. Also, oscillations can 88 
be reduced or removed by applying the same process and changing initial parameters to 89 
generate many different shapes of trajectories. In summary, this method presents versa- 90 
tility as the main characteristic. Many unique advantages introduced through this work 91 
have been given to help obtain better reliable, smooth, and long-life robotic systems. 92 

The remainder of this paper is organized as follows: Section 2 introduces the prelim- 93 
inary properties that were taken to construct the trajectory function and define it. Section 94 
3 describes the algorithm and the algorithm's proof and shows examples to generate a 95 
trajectory that converges to the via point. Section 4 presents the results by generating tra- 96 
jectories with the same initial via point and final position; and the obtained trajectory with 97 
its velocity, acceleration, and jerk. Section 5 mentions a critical discussion of the results 98 
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obtained with the proposed algorithm (IOSTV (𝜁)!-HF) compared to the 6th-order poly- 99 
nomial method. Finally, section 6 summarizes the conclusion of the work and indicates 100 
further work. 101 

2. Preliminary properties 102 

2.1. Nomenclature 103 
𝑛: fixed constant greater to 1 (𝑛 > 1). 104 
𝑎: velocity, acceleration, and Jerk modifier parameter (it is fixed).  105 
𝑡": final trajectory time. 106 
𝑆#: final position.  107 
𝑞$: initial position.  108 
𝜁%: objective parameter outcome in the 𝑖&' iteration. 109 
𝑛!: fixed constant greater to 1 (𝑛! > 1). 110 
𝑎!: velocity, acceleration, and Jerk modifier parameter (it is fixed).  111 
𝑡!: via point time. 112 
𝜃!: via point. 113 
𝑆!!: feedback iterative sequence  114 
This method presented in [35] has been tested recently to obtain velocity, accelera- 115 

tion, and jerk with a smaller gap in the via point time (𝑡!). Although this method presents 116 
non-continuous derivatives, these remain finite without showing inconvenience. Moreo- 117 
ver, the resulting trajectory can be changed to avoid or reduce unnatural oscillation, no 118 
matter how short or long the distance is. This is possible because of the construction of the 119 
function below: 120 

𝑆()&"(𝑡) =

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑞$	𝑖𝑓	𝑡 ≤ 0
𝑛&*(

7𝑛&+
&"
& *, − 𝑛)7

+ 𝑞$	𝑖𝑓	0 < 𝑡 ≤ 𝑡"	𝑎𝑛𝑑	𝑞$ ≤ 𝑆#

−
𝑛&*(

7𝑛&+
&"
& *, − 𝑛)7

+ 𝑞$	𝑖𝑓	0 < 𝑡 ≤ 𝑡-	𝑎𝑛𝑑	𝑆# < 𝑞$

.	 (1) 

This function has been shown in [26] and it was used to generate point-to-point tra- 121 
jectories, but in this work, (1) is added to generate via point trajectories as well (this is 122 
explained deeply in section 4). 123 

The ideas behind the way this function was constructed are simple. First, we know 124 
that any function with the form 𝑛&*(, where 𝑛 > 1, can reach any positive or negative 125 
point (when this function is negative −𝑛&*() monotonically increasing or decreasing, re- 126 
spectively, by just calculating 𝜁 at any particular time. Still, it cannot start in any position 127 
chosen (when 𝑡 > 0). Nevertheless, this is solved by multiplying this function with the 128 

following =>𝑛&+
#"
# *, − 𝑛)>?

*,
. Then, note that:  129 

  130 

lim
&→$$

±
𝑛&*(

7𝑛&+
&"
& *, − 𝑛)7

= 0. (2) 

Once it is verified that the calculation of the function (1) fulfills the essential require- 131 
ment to perform a trajectory with any particular start and final position, the parameter 𝜁 132 
is required to generate the trajectory starting and ending at a particular point; the formula 133 
is presented in [36, 37], but this time, the case 𝑆# = 𝑞$ is added in the definition of 𝜁. Then:  134 
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𝜁 = D
𝑡" − log/GH𝑆# − 𝑞$I(𝑛&" − 𝑛))J 	𝑖𝑓	𝑆# > 𝑞$
𝑡" − log/GH𝑞$ − 𝑆#I(𝑛&" − 𝑛))J 	𝑖𝑓	𝑞$ > 𝑆#

∞	𝑖𝑓	𝑆# = 𝑞$
.	 (3) 

2.1. Further properties 135 
Another point to consider using this method is uniqueness, more specifically, getting 136 

more properties that can help get a better understanding and use them to get the best 137 
solution. So, another remarkable characteristic of this function is that it can also be con- 138 
sidered a generating probability function and inherit its features. For example, consider 139 
the following probability function where 𝑡 is any parameter such that 𝑡 ∈ [0, 𝑡"] and 𝑥 = 140 
1,2,3, …  141 

𝑓(𝑥, 𝑡) =

⎩
⎪
⎨

⎪
⎧

0	𝑖𝑓	𝑡 ≤ 0,

T
𝑛(&*()

7𝑡 U𝑛&+
&"*&
& − 𝑛) + 𝑛&*(V7

W

2

	𝑖𝑓	0 < 𝑡 ≤ 𝑡"
	. (4) 

The following is calculated using the definition of probability generating function. 142 
The parameter 𝑡 is considered the same parameter 𝑡 from 𝑓(𝑥, 𝑡) and the definition of 143 
probability generating function: 144 

X𝑡2𝑓(𝑥)
3

24$

, (5) 

Then: 145 

𝐺(𝑡) =$ 𝑡𝑥
∞

𝑥=0

𝑓(𝑥, 𝑡) =$ 𝑡𝑥%
𝑛(𝑡−𝜁)

&𝑡 '𝑛𝑡+
𝑡𝑠−𝑡
𝑡 − 𝑛𝑎 + 𝑛𝑡−𝜁(&

)

𝑥
∞

𝑥=0

=$ 𝑡𝑥 %
(𝑛𝑡−𝜁)𝑥

'|𝑡#| &𝑛𝑡+
𝑡𝑠−𝑡
𝑡 − 𝑛𝑎 + 𝑛𝑡−𝜁&(

𝑥)
∞

𝑘=1

=
𝑛$%&

%− 𝑛𝑡−𝜁

&𝑛𝑡+
𝑡𝑠−𝑡
𝑡 − 𝑛𝑎 + 𝑛𝑡−𝜁&

+ 1) '&𝑛𝑡+
𝑡𝑠−𝑡
𝑡 − 𝑛𝑎 + 𝑛𝑡−𝜁&(

=
𝑛$%&

'&−𝑛𝑡−𝜁 + 𝑛𝑡+
𝑡𝑠−𝑡
𝑡 − 𝑛𝑎 + 𝑛𝑡−𝜁&(

=
𝑛$%&

'&𝑛𝑡+
𝑡𝑠−𝑡
𝑡 − 𝑛𝑎&(

	. 

(6) 

Function (6) is a probability generating function for when 𝜁 = 1 − log/|𝑛&" − 𝑛)| 146 
and because it must fulfill that lim

&→,&
𝐺(𝑡) = 1. Taking into account the example of Figure 147 

1, 𝑛 = 2, 𝑡" = 3, 𝑎 = 0, 𝑆# = 4 and 𝑞$ = 0, a trajectory is obtained being 𝑆"#$!(𝑡), function 148 
(1), a probability generating function:   149 
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 150 
Figure 1. trajectory example where 𝑆"#$!(𝑡) is a probability generating function with parameters 151 
𝑛 = 2, 𝑡% = 3, 𝑎 = 0, 𝑆& = 4 and 𝑞' = 0. 152 

Making 𝑆()&"(𝑡) a Probability-Generating Function (PGF) can give us many benefits 153 
that will be discussed in future works. For example, one of these remarkable benefits is 154 
that: a PGF could potentially be used as a tool to analyze the probability distribution of 155 
the joint space trajectory, which could be useful in understanding the characteristics of the 156 
trajectory and optimizing the performance and reliability of the robot arm by providing a 157 
way to analyze and understand the probability distribution of the joint angles as the arm 158 
moves through its range of motion. For example, it can be used to know an average ve- 159 
locity through the trajectory for better performance and then choose a suitable motor that 160 
can work with this velocity average, but this must be studied deeply. Also, it could be 161 
interesting to note that, without losing generality, if 𝑆()&"(𝑡) is a PGF, it is easy to see that 162 
every derivative starts at zero when 𝑡 = 0 (since 𝑓(𝑥, 0) = 0 and the preposition that in- 163 
dicates for every generating function to occur that 𝑃(𝑋 = 𝑥) = ,

2!
𝐺2(0)), which is impos- 164 

sible for some current methods. Any trajectory with a start and final position it can be 165 
obtained by calculating 𝜁, as mentioned before, with its derivatives starting at 0 (when 166 
𝑡 = 0). So, these are some prelaminar ideas that were considered to construct function (1) 167 
and to avoid some disadvantages presented in the current works stated in the introduc- 168 
tion part of this article. 169 

3. Algorithm description 170 
The trajectory function obtained by applying the method (IOSTV (𝜁)!-HF) is de- 171 

noted as 𝑆%(()&")'(𝑡), where 𝑖 represents the number of iterations. While these iterations 172 
increase, the trajectory gets closer and closer to the via point, forming a homotopy with a 173 
family of functions with different parameters 𝜁% and 𝜁!! calculated in every iteration un- 174 
til a solution for these two parameters fits to generate the desired via-point trajectory. This 175 
happens because 𝜁% and 𝜁!! converge when 𝑖 tends to infinity (𝑖 → ∞) by calculating the 176 
sequence 𝑆!!  for every iteration, making 𝑆%(()&")'(𝑡)  passes through the specified via 177 
point in the desired via point time (𝑡!). Then, the function is defined as 𝑆%(()&")'(𝑡): [0, 𝑡"] → 178 
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ℝ and with the following conditions (𝑆!! is defined in (9)), each condition is provided 179 
with an example: 180 

𝑆%(()&")'(𝑡)

=

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

𝑞$	𝑖𝑓	𝑡 ≤ 0

1𝑠𝑡	𝑐𝑜𝑛𝑑

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑛&*(!

7𝑛&+
&"
& *, − 𝑛)7

+
𝑛!
&*('!

c𝑛!
&+&'& *, − 𝑛!

)'c
+ 𝑞$	𝑖𝑓	0 < 𝑡 ≤ 𝑡!	𝑎𝑛𝑑	𝑞$ ≤ 𝑆!! ≤ 𝑆#

𝑛&*(!

7𝑛&+
&"
& *, − 𝑛)7

+
𝑛!
&'*('!

d𝑛!
&'*, − 𝑛!

)'d
+ 𝑞$		𝑖𝑓	𝑡! < 𝑡 ≤ 𝑡"	𝑎𝑛𝑑	𝑞$ ≤ 𝑆!! ≤ 𝑆#

2𝑛𝑑	𝑐𝑜𝑛𝑑

⎩
⎪⎪
⎨

⎪⎪
⎧−

𝑛&*(!

7𝑛&+
&"
& *, − 𝑛)7

+
𝑛!
&*('!

c𝑛!
&+&'& *, − 𝑛!

)'c
+ 𝑞$	𝑖𝑓	0 < 𝑡 ≤ 𝑡!	𝑎𝑛𝑑	𝑞$ < 𝑆!! , 𝑆# < 𝑆!!

−
𝑛&*(!

7𝑛&+
&"
& *, − 𝑛)7

+
𝑛!
&'*('!

d𝑛!
&'*, − 𝑛!

)'d
+ 𝑞$		𝑖𝑓	𝑡! < 𝑡 ≤ 𝑡"	𝑎𝑛𝑑	𝑞$ < 𝑆!! , 𝑆# < 𝑆!!

. 
(7) 

And for when 𝑆!! < 𝑞$, the next conditions are followed:  181 

 	
𝑆%(()&")'(𝑡)

=

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧

3𝑟𝑑	𝑐𝑜𝑛𝑑

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑛&*(!

7𝑛&+
&"
& *, − 𝑛)7

−
𝑛!
&*('!

c𝑛!
&+&'& *, − 𝑛!

)'c
+ 𝑞$	𝑖𝑓	0 < 𝑡 ≤ 𝑡!	𝑎𝑛𝑑	𝑆!! < 𝑞$, 𝑆!! < 𝑆#

𝑛&*(!

7𝑛&+
&"
& *, − 𝑛)7

−
𝑛!
&'*('!

d𝑛!
&'*, − 𝑛!

)'d
+ 𝑞$		𝑖𝑓	𝑡! < 𝑡 ≤ 𝑡"	𝑎𝑛𝑑	𝑆!! < 𝑞$, 𝑆!! < 𝑆#

4𝑡ℎ	𝑐𝑜𝑛𝑑

⎩
⎪⎪
⎨

⎪⎪
⎧−

𝑛&*(!

7𝑛&+
&"
& *, − 𝑛)7

−
𝑛!
&*('!

c𝑛!
&+&'& *, − 𝑛!

)'c
+ 𝑞$	𝑖𝑓	0 < 𝑡 ≤ 𝑡!	𝑎𝑛𝑑	𝑆!! < 𝑞$, 𝑆# < 𝑆!!

−
𝑛&*(!

7𝑛&+
&"
& *, − 𝑛)7

−
𝑛!
&'*('!

d𝑛!
&'*, − 𝑛!

)'d
+ 𝑞$		𝑖𝑓	𝑡! < 𝑡 ≤ 𝑡"	𝑎𝑛𝑑	𝑆!! < 𝑞$, 𝑆# < 𝑆!!

. 
(8) 

𝜁% and 𝜁!! converge if the feedback iterative sequence H𝑆!!I is defined as follows: 182 

  𝑆!! =

⎩
⎪
⎨

⎪
⎧𝜃! −

/#'&(!&)

A/
#'$

#"
#'
&)
*/*A

	𝑓𝑜𝑟	𝑡ℎ𝑒	1𝑠𝑡	𝑎𝑛𝑑	3𝑟𝑑	𝑐𝑜𝑛𝑑

𝜃! +
/#'&(!&)

A/
#'$

#"
#'
&)
*/*A

	𝑓𝑜𝑟	𝑡ℎ𝑒	2𝑛𝑑	𝑎𝑛𝑑	4𝑡ℎ	𝑐𝑜𝑛𝑑
	, (9) 

For every 𝑖 = 1,2,3,4, … and when 𝑖 = 0, then 𝑆!+  is any real number that fulfills 183 
any of the conditions presented before in (7) and (8).  184 

𝑆!! is called the iterative feedback sequence and is used to calculate 𝜁!! and 𝜁% as 185 
follows: 186 

𝜁!! = D
𝑡! − 𝑙𝑜𝑔/'GHd𝑆!! − 𝑞$dIHd𝑛!

&' − 𝑛!)dIJ		𝑖𝑓	𝑞$ < 𝑆!!
𝑡! − 𝑙𝑜𝑔/'GHd𝑞$ − 𝑆!!dIHd𝑛!

&' − 𝑛!)dIJ		𝑖𝑓	𝑆!! < 𝑞$
∞	𝑖𝑓	𝑆!! = 𝑞$

	, (10) 
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𝜁% = D
𝑡" − 𝑙𝑜𝑔/GHd𝑆# − 𝑆!!dI(|𝑛

&" − 𝑛)|)J		𝑖𝑓	𝑆!! < 𝑆#
𝑡" − 𝑙𝑜𝑔/GHd𝑆!! − 𝑆#dI(|𝑛

&" − 𝑛)|)J		𝑖𝑓	𝑆# < 𝑆!!
∞	𝑖𝑓	𝑆!% = 𝑆#

	. 

Now, with everything mentioned before, the algorithm to obtain a trajectory with an 187 
initial point, a via point at 𝑡!, and a final point at 𝑡" is introduced: 188 

Algorithm. Let 𝑛, 𝑛! > 1 , 𝑡" > 𝑡! > 0 , 𝑎 < 𝑡" , 𝑎! < 𝑡! , defining 𝑆!!  as in (9) for 189 
every 𝑖 = 1,2,3,4,5, … and taking any 𝑆!+ that achieves any of the conditions presented 190 
before in (7) and (8), there exist 𝜁!!  and 𝜁%  for when 𝑖  tends to infinity, such that 191 
𝑆%(()&")'(0) = 𝑞$, 𝑆%(()&")'(𝑡!) = 𝜃! and 𝑆%(()&")'(𝑡") = 𝑆#. 192 

Proof: The constraints 𝑆%(()&")'(0) = 𝑞$ and 𝑆%(()&")'(𝑡") = 𝑆# for every 𝑖 = 0,1,2,3, … 193 
are easily fulfill by definition: 194 

Now, let any 𝑆!+  such as 𝑆# > 𝑆!+  and 𝑞$ < 𝑆!+ , then 𝜁$ = 𝑡" − 𝑙𝑜𝑔/GHd𝑆# − 195 
𝑆!+dI(|𝑛

&" − 𝑛)|)J  and 𝜁!+ = 𝑡! − 𝑙𝑜𝑔/'GHd𝑆!+ − 𝑞$dIHd𝑛!
&' − 𝑛!)dIJ , the trajectory functions 196 

(11) at the iteration 𝑖 = 0 is the following: 197 

𝑆(()&")'+(𝑡) =
𝑛&*(+

7𝑛&+
&"
& *, − 𝑛)7

+
𝑛!
&*('+

c𝑛!
&+&'& *, − 𝑛!

)'c
+ 𝑞$. 

 

(11) 

Then, making: 198 

𝑛!
&'*(',

d𝑛!
&' − 𝑛!

)'d
+ 𝑞$ = 𝑆!, = 𝜃! −

𝑛&'*(+

7𝑛&'+
&"
&'
*, − 𝑛)7

. 

 

(12) 

Using the new feedback sequence in the second iteration 𝑆!, to calculate 𝜁B = 𝑡" − 199 
𝑙𝑜𝑔/GHd𝑆# − 𝑆!,dI(|𝑛

&" − 𝑛)|)J and 𝜁!, = 𝑡! − 𝑙𝑜𝑔/'GHd𝑆!, − 𝑞$dIHd𝑛!
&' − 𝑛!)dIJ. 200 

𝑆(()&")',(𝑡) =
𝑛&*(,

7𝑛&+
&"
& *, − 𝑛)7

+
𝑛!
&*(',

c𝑛!
&+&'& *, − 𝑛!

)'c
+ 𝑞$.	

	

(13) 

Now, taking any value of 𝑆!)  such that 𝑆!) < 𝑆#  and 𝑞$ > 𝑆!) , then 𝜁, = 𝑡" − 201 
𝑙𝑜𝑔/GHd𝑆# − 𝑆!)dI(|𝑛

&" − 𝑛)|)J and 𝜁!) = 𝑡! − 𝑙𝑜𝑔/'GHd𝑞$ − 𝑆!)dIHd𝑛!
&' − 𝑛!)dIJ, it gets the fol- 202 

lowing trajectory function (14) at 𝑖 = 1: 203 

𝑆(()&")')(𝑡) =
𝑛&*()

7𝑛&+
&"
& *, − 𝑛)7

−
𝑛!
&*(')

c𝑛!
&+&'& *, − 𝑛!

)'c
+ 𝑞$. (14) 

And making: 204 

−
𝑛!
&*('-

d𝑛!
&' − 𝑛!

)'d
+ 𝑞$ = 𝑆!- = 𝜃! −

𝑛&'*()

7𝑛&'+
&"
&'
*, − 𝑛)7

	. 

 

(15) 

Using 𝑆!- in (15) to calculate 𝜁C and 𝜁!- using formula (10) , then, the following 205 
trajectory function (16) at 𝑖 = 3 is: 206 

𝑆(()&")'-(𝑡) =
𝑛&*(-

7𝑛&+
&"
& *, − 𝑛)7

−
𝑛!
&*('-

c𝑛!
&+&'& *, − 𝑛!

)'c
+ 𝑞$. 

 

(16) 

Then, for the 4th iteration (𝑖 = 4), the following sequence (17) is obtained: 207 
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𝑛!
&'*('.

d𝑛!
&' − 𝑛!

)'d
+ 𝑞$ = 𝑆!. = 𝜃! −

𝑛&'*(,

7𝑛&'+
&"
&'
*, − 𝑛)7

	. (17) 

With 𝜁D = 𝑡" − 𝑙𝑜𝑔/GHd𝑆# − 𝑆!.dI(|𝑛
&" − 𝑛)|)J  and 𝜁!. = 𝑡! − 𝑙𝑜𝑔/'GHd𝑆!. − 208 

𝑞$dIHd𝑛!
&' − 𝑛!)dIJ by using formula (10). 209 

And for the 5th iteration, then: 210 

−
𝑛!
&'*('/

d𝑛!
&' − 𝑛!

)'d
+ 𝑞$ = 𝑆!/ = 𝜃! −

𝑛&'*(-

7𝑛&'+
&"
&'
*, − 𝑛)7

	. (18) 

 211 
With 𝜁E = 𝑡" − 𝑙𝑜𝑔/GHd𝑆# − 𝑆!/dI(|𝑛

&" − 𝑛)|)J  and 𝜁!/ = 𝑡! − 𝑙𝑜𝑔/'GHd𝑞$ − 212 
𝑆!/dIHd𝑛!

&' − 𝑛!)dIJ by using formula (10). 213 
Repeating this process 𝑘 times, it has: 214 

𝑛!
&'*('0

d𝑛!
&' − 𝑛!

)'d
+ 𝑞$ = 𝑆!0 = 𝜃! −

𝑛&'*(0&,

7𝑛&'+
&"
&'
*, − 𝑛)7

	. (19) 

 215 
Using formula (10), 𝜁F = 𝑡" − 𝑙𝑜𝑔/GHd𝑆# − 𝑆!0dI(|𝑛

&" − 𝑛)|)J  and 𝜁!0 = 𝑡! − 216 
𝑙𝑜𝑔/'GHd𝑆!0 − 𝑞$dIHd𝑛!

&' − 𝑛!)dIJ and (20) is obtained representing the trajectory in in the 𝑘- 217 
iteration: 218 

𝑆(()&")'0(𝑡) =
𝑛&*(0

7𝑛&+
&"
& *, − 𝑛)7

+
𝑛!
&*('0

c𝑛!
&+&'& *, − 𝑛!

)'c
+ 𝑞$, 

 

(20) 

Such that: 219 

𝑆(()&")'0(𝑡!) =
𝑛&'*(0

7𝑛&'+
&"
&'
*, − 𝑛)7

+
𝑛!
&'*('0

d𝑛!
&' − 𝑛!

)'d
+ 𝑞$ =

𝑛&'*(0

7𝑛&'+
&"
&'
*, − 𝑛)7

+ H𝑆!0I

=
𝑛&'*(0

7𝑛&'+
&"
&'
*, − 𝑛)7

+ T𝜃! −
𝑛&'*(0&,

7𝑛&'+
&"
&'
*, − 𝑛)7

W, 

(21) 

And for the 𝑘 + 1 time, it has: 220 

−
𝑛!
&'*('0$)

d𝑛!
&' − 𝑛!

)'d
+ 𝑞$ = 𝑆!0$) = 𝜃! −

𝑛&'*(0&)

7𝑛&'+
&"
&'
*, − 𝑛)7

	. (22) 

Then, using formula (10), 𝜁F+, = 𝑡" − 𝑙𝑜𝑔/GHd𝑆# − 𝑆!0$)dI(|𝑛
&" − 𝑛)|)J  and 𝜁!0$) = 221 

𝑡! − 𝑙𝑜𝑔/'GHd𝑞$ − 𝑆!0$)dIHd𝑛!
&' − 𝑛!)dIJ and the trajectory function (23) is obtained: 222 

𝑆(()&")'0$)(𝑡) =
𝑛&*(0$)

7𝑛&+
&"
& *, − 𝑛)7

−
𝑛!
&*('0$)

c𝑛!
&+&'& *, − 𝑛!

)'c
+ 𝑞$, (23) 

 223 
Such that: 224 

𝑆(()&")'0$)(𝑡!) =
𝑛&'*(0$)

7𝑛&'+
&"
&'
*, − 𝑛)7

−
𝑛!
&'*('0$)

d𝑛!
&' − 𝑛!

)'d
+ 𝑞$ =

𝑛&'*(0$)

7𝑛&'+
&"
&'
*, − 𝑛)7

+ H𝑆!0$)I

=
𝑛&'*(0$)

7𝑛&'+
&"
&'
*, − 𝑛)7

+ T𝜃! −
𝑛&'*(0&)

7𝑛&'+
&"
&'
*, − 𝑛)7

W. 

(24) 

 225 
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Then, because of /#'&(0&,

A/
#'$

#"
#'
&)
*/*A

 and /#'&(0&)

A/
#'$

#"
#'
&)
*/*A

 are always finite for every 𝜁F*B and 226 

𝜁F*,, and the way 𝜁F*B, 𝜁F*, and the subsequent 𝑆!0 and 𝑆!0$) have been defined, this 227 

mean that when 𝑘 tends to infinity (𝑘 → ∞) then lim
F→3

𝑆!0 = 𝜃! −
/#'&(1

A/
#'$

#"
#'
&)
*/*A

= lim
F→3

𝑆!0$),  228 

this limit is finite too, making: 229 

𝑆(()&")'1(𝑡!) =
𝑛&'*(1

7𝑛&'+
&"
&'
*, − 𝑛)7

+
𝑛!
&'*('1

d𝑛!
&' − 𝑛!

)'d
+ 𝑞$ =

𝑛&'*(1

7𝑛&'+
&"
&'
*, − 𝑛)7

+ H𝑆!1I

=
𝑛&'*(1

7𝑛&'+
&"
&'
*, − 𝑛)7

+ T𝜃! −
𝑛&'*(1

7𝑛&'+
&"
&'
*, − 𝑛)7

W = 𝜃!, 

 

(25) 

And, 230 

𝑆(()&")'1(𝑡!) =
𝑛&'*(1

7𝑛&'+
&"
&'
*, − 𝑛)7

−
𝑛!
&'*('1

d𝑛!
&' − 𝑛!

)'d
+ 𝑞$

=
𝑛&'*(1

7𝑛&'+
&"
&'
*, − 𝑛)7

+ l−
𝑛!
&'*('1

d𝑛!
&' − 𝑛!

)'d
+ 𝑞$m =

𝑛&'*(1

7𝑛&'+
&"
&'
*, − 𝑛)7

+ H𝑆!1I

=
𝑛&'*(1

7𝑛&'+
&"
&'
*, − 𝑛)7

+ T𝜃! −
𝑛&'*(1

7𝑛&'+
&"
&'
*, − 𝑛)7

W = 𝜃!. 

 

(26) 

Therefore, 𝑆(()&")'!(𝑡!) = 𝜃! for when 𝑖 → ∞. An analog proof can be constructed for 231 
the other conditions. 232 

∎ 233 

3.1. Examples 234 
Now, considering a trajectory with 𝑞$ = −12, 𝜃! = 5 and 𝑆# = 30 with the next pa- 235 

rameters 𝑛! = 2, 𝑎! = 0.05, 𝑡! = 1.5 with a final 𝜁!! = 5.4327… and 𝑛 = 2.5, 𝑎 = −1.4, 236 
𝑡" = 3 and a final 𝜁% = −4.0586… at the iteration number 40 and 𝑆!% = −11.9635. The 237 
following trajectories are presented in Figure 2. 238 
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 239 
Figure 2. Homotopy trajectories are approaching to the via point 𝜃! = 5 at 𝑡! = 1.5 and 240 
initial position 𝑞$ = −12 and 𝑆# = 30 using the first and second condition.   241 

As noted in Figure 1, the trajectory avoids oscillation with a soft start and reaches the 242 
final position with a sharp end (non-zero velocity). Nevertheless, the trajectory can be 243 
softer at the end position, changing the parameters 𝑎! and 𝑎 and switching between the 244 
abovementioned conditions. For example, considering the parameters presented before 245 
but changing 𝑎! = 1.2481 and a 𝑆!% = −27.2749. The obtained results are shown in Fig- 246 
ure 3. 247 

 248 
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Figure 3. Homotopy trajectories are approaching the via point 𝜃! = 5 at 𝑡! = 1.5 and in- 249 
itial position 𝑞$ = −12  and 𝑆# = 30  using the first, second, and third condition and 250 
changing its shape. 251 

As can be seen in Figure 3, the last trajectory passes through the three desired posi- 252 
tions presented in Figure 2 but with a different shape. This is because different parameters 253 
have been chosen, and a velocity too close to zero at 𝑡" has been obtained by repeating 254 
the process that this algorithm defines, making the trajectory has a S-shape as a result. 255 

Now, taking a much more difficult trajectory to perform, the algorithm can be run 256 
for a longer time, and sometimes this is much more difficult to guess the complexity of 257 
the trajectory. In other words, it is much more challenging to know exactly where an 258 
oscillation is and is not occurring. For example, Figure 4 presents a trajectory with this 259 
behavior, considering the following values: 𝑞$ = 10, 𝜃! = 25, and 𝑆# = 62. Taking 𝑛! = 260 
1.7, 𝑎! = 0.05, 𝑡! = 2.6 with a final 𝜁!! = −16.6294… and 𝑛 = 1.8, 𝑎 = 1.2, 𝑡" = 3 and 261 
𝜁% = −14.8052… in the iteration 7067th. 262 

 263 
Figure 4. Example of complex trajectories approaching the via point 𝜃! = 25 at 𝑡! = 2.6 264 
and initial position 𝑞$ = 10 and 𝑆# = 62 at 𝑡" = 3. 265 

This trajectory can be modified by changing some preliminary parameters such as 266 
𝑛!, 𝑛, 𝑎!, and 𝑎. However, these are difficult to guess. Currently, there is not an existing 267 
analytic formula or definition to get these parameters for a particular trajectory shape, so 268 
these parameters are changed manually to get complex trajectories. For example, Figure 269 
5 shows trajectories that were obtained while changing some of the parameters mentioned 270 
before. 271 
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  272 
Figure 5. Example of complex trajectories approaching the via point 𝜃! = 25 at 𝑡! = 2.6 273 
and initial position 𝑞$ = 10 and 𝑆# = 62 at 𝑡" = 3, reducing the spikes of the oscillations 274 
changing the parameters 𝑛!, 𝑎!, and 𝑛, 𝑎.  275 

Finally, obtaining a trajectory with the same constraints with no oscillations is possi- 276 
ble. For example, Figure 6 shows the trajectories obtained with the following values 𝑛! = 277 
125 , 𝑎! = −100 , 𝑛 = 70 , and 𝑎 = 2.2  with a final 𝜁!! = −0.7130…  and 𝜁 = −1.0328 278 
and a 𝑆!! = −21.2603… at the iteration number 58th. 279 

 280 
Figure 6. Example of complicated trajectories approaching the via point 𝜃! = 25 at 𝑡! = 281 
2.6 and initial position 𝑞$ = 10 and 𝑆# = 62 at 𝑡" = 3, reducing the spikes of the oscilla- 282 
tions changing the parameters 𝑛!, 𝑎!, and 𝑛, 𝑎.  283 
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In Figure 6, it can be observed that the trajectory avoids any oscillation. This is pos- 284 
sible because the parameters mentioned before have been changed. The trajectory made 285 
between the initial point (𝑞$) and the via-point (𝜃!) has a different velocity, acceleration, 286 
and Jerk trajectory than the trajectory made between the via-point (𝜃!) and the final point 287 
𝑆#. In other words, it has 𝐶$ continuity for the cases presented before. Hence, avoiding 288 
any oscillation for any via point time 𝑡! and final time 𝑡" is possible. This is another ad- 289 
vantage gained by taking IOSTV (𝜁)!-HF, therefore versatile and complex trajectories can 290 
be obtained by applying this method, and this is not always possible with other current 291 
methods.    292 

Also, note that in Figures 4, 5, and 6, the trajectory ends with a sharp end position. 293 
This is because the velocity has a short period (which is 2.6 ≤ 𝑡 ≤ 3) to be well distributed 294 
through that period of time. Nevertheless, the trajectory always presents finite velocity, 295 
acceleration, and jerks, and the trajectory at the end position can be softer over a more 296 
significant period.  297 

4. Results: Velocity, Acceleration and Jerk function  298 
The velocity, acceleration, and jerk functions have been presented in [37]. This work 299 

needs to retake the topic of these functions because it is crucial for a long-life robotic sys- 300 
tem to exist. As shown in the previous examples, the trajectories presented get no contin- 301 
uous velocity, acceleration, and jerk at the via point time (𝑡!). Nevertheless, every value is 302 
bounded, and the gap between the velocity, acceleration, and jerk in 𝑡! can be reduced as 303 
much as desired, making a safe motion in the joint space. Moreover, the IOSTV (𝜁)!-HF 304 
is not the first method that presents no-continuous velocity, acceleration, or jerk. Some 305 
methods mentioned before in the introduction and many others often used currently pre- 306 
sent no-continuous velocity, acceleration, or jerk. For example, [38] used trapezoidal ve- 307 
locity profiles to generate trajectories and presents a no-continuous jerk profile, which is 308 
bounded and ready for implementation.  309 

Also, [39, 49] present not-zero velocity at the final point, but this method is a perfect 310 
tool for obstacle avoidance, as it wanted to show using IOSTV (𝜁)!-HF. 311 

In [38], the via-point trajectory taken from [9] has been used to compare it with the 312 
IOSTV (𝜁)!-HF method by presenting a trajectory shape with continuous velocity and 313 
another with continuous acceleration. In [9], the trajectory compared was not optimal, and 314 
a significant gap in the velocity was presented. In this work, the via-point trajectory taken 315 
from [9] is retaken to get a better trajectory than the one that was presented in [37] and 316 
compared with the result from [36]. The values are 𝑞$ = 30, 𝜃! = 180 at 𝑡! = 1.5 sec- 317 
onds, and 𝑆# = 120 at 𝑡" = 3 seconds, and the sixth order polynomial from [9] is: 318 

𝜃(𝑡) = −9.22𝑡G + 85.19𝑡E − 265.56𝑡D + 282.22𝑡C + 30. (27) 

Plotting this trajectory in Matlab, it is shown that the trajectory gets 185.4 degrees as 319 
a maximum value, and 𝑡! = 1.5 the trajectory gets to 𝜃! = 180 degrees.  320 
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 321 
Figure 7. Trajectory obtained from the sixth-order polynomial. 322 

As shown in Figure 7, the trajectory presents a maximum value at 𝑡 = 1.74 sec. The 323 
method proposed in this work tried to reduce this oscillation, so this one was would not 324 
be greater than 181 degrees. The algorithm IOSTV (𝜁)!-HF was run several times until it 325 
got some solutions that fulfilled the requirements. First, it testes the trajectory result by 326 
finding values on the parameters to get a continuous velocity, for example, using the pa- 327 
rameters 𝑛! = 1.91 , 𝑎! = 0.8734 , 𝜁!% = −6.0657… , 𝑛 = 81.7467 , 𝑎 = 2.4 , and 𝜁% = 328 
−0.9204 in the iteration number 12, the following profiles are obtained and are shown in 329 
Figure 8. 330 



Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 19 
 

 331 
Figure 8. Trajectory solution with continuous velocity (it has 𝐶, continuity) starting at 332 
𝑞$ = 30, via point 𝜃! = 180 and 𝑆# = 120.  333 

Regarding the Acceleration and Jerk, it can be observed that they were discontinuous 334 
in 𝑡!. However, these do not present discontinuities at the start and end, like the method 335 
presented in [9]. Therefore, the discontinuities have been reduced to one by using IOSTV 336 
(𝜁)!-HF, and these are also kept finite. Also, the differences between the acceleration at 𝑡 337 
approaches to the left-approximation and the right-approximation to 𝑡! are insignificant, 338 
about 219.824 degrees/s2 of difference and getting 180.4 degrees as a leading position in 339 
the trajectory.  340 

Then, Figure 9 shows a trajectory with a continuous acceleration but discontinuous 341 
velocity and jerk using the following values 𝑛! = 5, 𝑎! = 0.5865, and 𝜁!! = −3.0399, and 342 
𝑛 = 5, 𝑎 = 1.95 and 𝜁% = −2.6193 in the iteration number 28. 343 
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 344 
Figure 9. Trajectory solution with continuous acceleration starting at 𝑞$ = 30, via point 345 
𝜃! = 180 and 𝑆# = 120.  346 

With the above parameters, the trajectory gets even a smaller jerk than the one that 347 
was found while using the 6th-order polynomial function from [9]. The acceleration func- 348 
tion using OISTV (𝜁)!-HF starts at 0 degrees/s3 and ends too close at 0 degrees/s3, which 349 
means that the trajectory shown presents a finite Jerk. The maximum value in the jerk 350 
function using OISTV (𝜁)!-HF was 1394 degrees/s3, and the lowest value was -1177 de- 351 
grees/s3 while using the 6th-order polynomial function, the maximum value jerk was 1693 352 
degrees/s3, and the lowest value was -1294 degrees/ s3. Also, the trajectory using IOSTV 353 
(𝜁)!-HF or the 6th-order polynomial function from [9] presents a finite jerk; this one is not 354 
continuous, though, but this characteristic, according to [9], obeys the rule of thumb for 355 
mechanical design/motion.  356 

5. Discussion 357 
This paper presents the idea of getting a trajectory to obtain the best performance or 358 

a motion in the joint space that fulfills some preliminary conditions that a user can state. 359 
This idea is reached by using the method presented and named after this work as OISTV 360 
(𝜁)!-HF. Some of these many essential conditions have been tested that make a safe tra- 361 
jectory while controlling a robotic arm. First, the method OISTV (𝜁)!-HF avoids and re- 362 
duces any undesired oscillation through the trajectory. The trajectory keeps finite velocity, 363 
acceleration, and jerk that obey the rule of thumb for mechanical design/motion; the algo- 364 
rithm OISTV (𝜁)!-HF works by iteration. This method creates a trajectory that is as accu- 365 
rate as wanted, generating many trajectories. In contrast, the number of iterations in- 366 
creases until a trajectory passes through the initial position 𝑞$ at 𝑡 = 0, then 𝜃! at the via 367 
point time 𝑡!, and finally gets to the final position 𝑆# at 𝑡" at the end time. 368 

Nevertheless, we have found some disadvantages while using this method. First, a 369 
desirable trajectory can be obtained, but some drawbacks must be made; for example, a 370 
trajectory can get a no-continuous velocity, more significant spikes in acceleration, or jerk. 371 
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At this time, there is not an existing method to get the best parameters that can allow us 372 
to generate a trajectory that fulfills all the desirable conditions. Therefore, we had to run 373 
this algorithm many times to obtain these parameters and get the desired trajectory, which 374 
means much time spent on tests. Moreover, the algorithm can run for an extended period, 375 
and the time the convergence occurs can vary depending on the parameters. For example, 376 
in these results, the longest-running time was about 17.5 seconds, and the shortest-run- 377 
ning time was about 0.052 seconds (the running time was obtained using a function of 378 
Matlab called as tic toc function). So, a method to generate trajectories with a faster run- 379 
ning time and find the best parameters to generate a trajectory that fulfills all the desired 380 
conditions must be developed in future works.    381 

6. Conclusion 382 
According to the results obtained in this work, it can be hypothesized that only one 383 

or several sets of parameters can work to obtain the desired trajectory. In addition, one or 384 
several sets of parameters can make a trajectory with continuous velocity, acceleration, 385 
and jerk. 386 

The method converges to a via point 𝜃! at any via point time 𝑡!. The method pro- 387 
posed has been tested, and according to the results and all characteristics introduced in 388 
this work; the IOSTV (𝜁)!-HF method presents some advantages, such as avoiding un- 389 
wanted oscillations; in addition, several options are generated to choose the best trajectory 390 
or, in its case, the one that meets the desired conditions. It can reduce the complexity of 391 
trajectories by setting new parameters, and generating infinity options of generating a 392 
trajectory that fulfills basic constraints. Furthermore, the method generates trajectories 393 
with a finite jerk and continuous acceleration that avoids infinite jerks. All the derivatives 394 
while using the IOSTV (𝜁)!-HF start at 0, which is a uniqueness of this method and is 395 
advantageous for reliable, smooth, and long-life robotic systems. 396 

Although this method has to be improved, at this time, it is a confident tool for gen- 397 
erating safe and reliable trajectories; meanwhile, a new algorithm has to be designed to 398 
get a trajectory that converges to the via point by iterations in a faster way. Also, in future 399 
works, finding a solution to get a set of suitable parameters that makes a continuous ve- 400 
locity, acceleration, and jerk without presenting undesirables oscillations could make a 401 
complete method to generate safe trajectories in the joint space.   402 
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