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Abstract
In this study, the concentrations of Cd and Hg were measured in muscle of juvenile individuals at an importan fishing ground 
in southeastern Gulf of California to assess the health risk to human consumers considering elemental levels and rate of shark 
consumption in NW Mexico. Twenty-eight individuals were sampled in September 2019. Quantification of Hg was made 
by cold vapor-atomic absorption spectrophotometry, analyses of Cd were made by graphite furnace atomic absorption spec-
trophotometry. In general, average Hg (1.27 µg g−1 dry weight) concentrations were higher than Cd (0.059). In comparison 
to results of Cd and Hg in muscle of several species of genus Rhizoprionodon sp., our reported concentrations were com-
parable. Maximum permissible limits (Cd 0.5 and Hg 0.5 µg g−1 wet weight) in fish products for human consumption were 
not exceeded. Health risk assessment to shark consumers indicated that Hg is of more concern than Cd but no hazards exist.
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Essential elements (EE) are required within certain limits 
for metabolism of aquatic biota (Perelló et al. 2008). On 
the other hand, non-essential (NE) elements are not neces-
sary for organisms and may be deleterious at low concen-
trations. Mercury (Hg) and cadmium (Cd) are NE elements 
that are supplied to the environment by natural processes and 
human activities. Among anthropogenic activities, produc-
tion of non-ferrous metals and combustion of fossil fuels 
are the main contributors of Cd to the atmosphere (Pacyna 
and Pacyna 2001). With respect to Hg, it is emitted to the 
atmosphere through smelting, coal combustion, incineration, 
production of batteries and thermometers, and disposal of 
Hg-laden wastes from gold mining operations (Millward and 
Turner 2010). Fish of high position in food webs may accu-
mulate elevated concentrations of pollutants (Ali and Khan 
2018); sharks are top predators that may accumulate high 

levels of NE elements and they constitute relevant sources 
of Cd and Hg to human consumers (Okocha and Adedeji 
2011; Fréry et al. 2001).

The Pacific sharpnose shark (Rhizoprionodon longurio) is 
a migratory species of important contributions to small-scale 
landings in the SE Gulf of California from November to 
May, and it is one of the main components of shark landings 
in the region (Furlong-Estrada et al. 2015). However, and 
despite its abundance and economic importance, information 
related to environmental parameters is missing. In coastal 
communities, shark muscle constitutes an important source 
of proteins but also a potential source of biomagnified Hg 
and Cd (Hurtado-Banda et al. 2012). There are a few studies 
in relation to the differences of Cd and Hg concentrations 
between females and males of sharks. Considering that stud-
ied sharpnose sharks were of similar size and weight, our 
hypothesis is that there are not differences of Cd and Hg 
in muscle between sexes. In this context, it is necessary to 
determine the levels of Cd and Hg in R. longurio from NW 
Mexico. In the present study, Cd and Hg were measured in 
muscle of R. longurio to determine the degree of bioaccu-
mulation and to assess the health risk to human consumers 
according to levels of Cd and Hg and the rate of shark con-
sumption in NW Mexico.
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Materials and Methods

Sharpnose sharks were collected off the estuarine system 
of Santa Maria La Reforma (Fig. 1) on September 2019 by 
the small-scale shark fishery operating in this system using 
surface and bottom gillnets and surface longlines. All sam-
ple collection was opportunistic and carried out in accord-
ance with relevant national guidelines and regulations.

Twenty eight sharks (20 males, 8 females) were taxo-
nomically identified (Fischer et al. 1995) and weight and 
total length (TL) were determined (Table 1). Samples of 
muscle were obtained from every specimen with stain-
less steel scalpels and transported to the laboratory in ice 
boxes. To avoid contamination of samples during manip-
ulation and laboratory processing, glassware and plastic 
utensils were acid washed (Moody and Lindstrom 1997). 
Muscle samples were freeze-dried (− 49°C; 150 × 10− 3 
mBar; 72 h) and manually ground in an agate mortar. 
Homogenized powdered samples were digested with 
concentrated nitric acid in capped vials for 3 h at 120°C 
(MESL 1997). Analyses of Cd were made by graphite fur-
nace atomic absorption spectrophotometry (GF-AAS) and 
Zeeman effect in a PerkinElmer (AAnalyst 800) equip-
ment; Hg was measured by cold vapor-atomic absorp-
tion spectrophotometry (CV-AAS) in a Buck Scientific 
equipment.

Quality control of metal analyses included blanks, dupli-
cates, ultrapure water (milli-Q, 18.2 MΩ cm), trace metal 
grade acids and reference materials. Measured concentra-
tions of Cd (0.27 µg g−1) and Hg (0.34 µg g−1) in reference 
material (dogfish muscle DORM-3) were in agreement with 
certified mean values of Cd (0.29 µg g−1) and Hg (0.38 µg 
g−1). The limits of detection (two times the standard devia-
tion of a blank) were 0.003 µg g−1 for Cd and 0.02 µg g−1 
for Hg. Concentration units of Cd and Hg are given as µg 
g−1 dry weight. Conversions of concentration units from dry 
weight to wet weight and viceversa were made considering 
humidity percentage in muscle (75%) as reported elsewhere 
(Gil-Manrique et al. 2017). Concentrations of Cd and Hg in 
muscle of sharks were compared with maximum permissible 
limits in fishery products set in national and international 
legislations. Health risk of shark consumers was estimated 

Fig. 1   Location of La Reforma 
lagoon (SE Gulf of California) 
where Pacific sharpnose sharks 
were collected

Table 1   Sex, mean total weight (g), mean total length (cm) and stand-
ard deviation (minimum-maximum) of collected specimens of Pacific 
sharpnose shark from the SE Gulf of California

n, number of individuals

Sex N Weight Total length

Females 8 641 ± 94.3 (486–760) 54.21 ± 1.76 (51.7–55.9)
Males 20 688.5 ± 119.37 (545–1008) 54.24 ± 2.60 (51-60.4)
All 28 674.96 ± 113.17 (486–1008) 54.23 ± 2.36 (51-60.4)
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by the hazard index (HI) according to Newman and Unger 
(2002); the HI is the addtion of hazard quotients (HI = HQCd 
+ HQHg) for the studied elements. For assessing the HQ 
we used the concentrations of Cd and Hg in the muscle of 
sharks, HQ = E/RfD, where E is the exposure to Cd and Hg 
through muscle shark consumption, and RfD is the refer-
ence dose (US EPA 2000) of the elements of interest (Cd, 
0.5 µg kg−1 body weight day−1; Hg, 0.3 µg kg−1 body weight 
day−1). The exposure level (E) is calculated as E = C x I/W; 
where C is the concentration (µg g−1 wet weight basis) of 
Cd and Hg in the edible portion of shark, I is the average 
ingestion rate per capita of shark (6.54 g day−1) in the region 
where sharks were captured (CONAPESCA 2017) and W 
is the weight of an average adult (70 kg). Levels of Cd and 
Hg were tested for homoscedasticity (Shapiro-Wilks test) 
and normality (Kolmogorov-Smirnov test); since data were 
not normally distributed, non-parametric tests were used to 
define significant differences. Comparison of elemental con-
centrations in muscle of males and females of R. longurio 
were made by U Mann-Whitney test. Similarly, comparisons 
between Cd and Hg concentrations in muscle of all individu-
als were made by a U Mann-Whitney test. Satistical analysis 
were performed in a specialized software (IBM SPSS Statis-
tics 25) with a confidence level of 95%

Results and Discussion

Mean TL and weight of sharks indicate that they were juve-
niles (Table 1). The reported TL at birth of R. longurio from 
the Mexican Pacific ranges from 30 to 37 cm (Márquez-
Farías et al. 2005) and this species reaches maturity below 
100 cm (females 83 cm, males 93 cm) of TL (Alatorre-
Ramírez et al. 2013). Overall, Hg concentrations were signif-
icantly (p < 0.05) higher than Cd (Table 2); this is in agree-
ment with a global review (Amezcua et al. 2022) of Cd and 
Hg in sharks where Hg in muscle (1.507 µg g−1 wet weight) 
was higher than Cd (0.153 µg g−1 wet weight). Considering 
the sex of specimens, no significant (p > 0.05) differences 
of Hg and Cd concentrations were found between males and 

females. The elevated variability of Hg and Cd concentra-
tions may be related to differences in the feeding items (Fisk 
et al. 2002) but also to physiological factors that turn into 
varying accumulation rates and the degree of impact of the 
zones where sharks inhabit (Frías-Espericueta et al. 2019).

Published information related to the occurrence of Cd 
and Hg in muscle of Pacific sharpnose shark and related 
species (genus Rhizoprionodon) is scarce. On a global basis, 
twenty studies have reported Cd and Hg concentrations in 
six Rhizoprionodon species (Table 3).

Most of the studies correspond to R. acutus. Overall, 
Cd concentrations were lower than Hg; for both elements, 
concentrations varied by two magnitude orders. The high-
est concentration of Cd (0.35  µg g−1) was reported by 
Núñez-Nogueira (2005) in R. terraenovae from the Gulf of 
Mexico; in the case of Hg, the highest value (5.0 µg g−1) 
corresponded to R. lalandii from a site in Rio de Janeiro 
(Amorim-Lopes et al. 2020) that is polluted by domestic and 
industrial untreated sewage and other anthropogenic sources 
(Fistarol et al. 2015).

In comparison with maximum permissible limits (Cd 
0.5 µg g−1 wet weight; Hg, as methyl mercury, 0.5 µg g−1 
wet weight) in fish for human consumption (NOM 2009), 
measured concentration of both elements (Cd 0.015 µg g−1 
wet weight; Hg 0.353 µg g−1 wet weight) were within legal 
thresholds. Health risk assessment for shark consumers was 
made considering the individual (HQ) and combined (HI) 
occurrence of Cd and Hg in muscle (Table 4).

Values of HQHg were more elevated than HQCd, as indica-
tive that the presence of Hg is of more concern to consumers 
than Cd in muscle of R. longurio. None of the HI values 
were above the unit; i.e. the consumption of muscle of R. 
longurio from La Reforma lagoon does not pose any haz-
ard different to cancer to consumers during their life expec-
tancy in terms of the presence of Hg and Cd. Though no HI 
value was above the unit, it is important to highlight that 
other EE and NE elements may contribute significantly to 
increase the HI. For example, HQ values of Hg related to 
consumption of Sphyrna lewini and HQ values of Cd associ-
ated to consumption of Carcharhinus porosus from Trinidad 
and Tobago were above one (Mohammed and Mohammed 
2017). As concluding remarks we may say that considering 
all shark specimens, Hg concentrations were higher than 
Cd. Although both elemental concentrations were higher in 
males than in females, differences were not significant. Lev-
els of Cd and Hg in muscle of R. longurio of this study were 
within the intervals reported for both elements in sharks of 
the same genus from all over the world. Health risk assess-
ment to consumers indicate that at the rate of shark con-
sumption and levels of Cd and Hg in muscle of R. longurio 
no health problems may occur.

Table 2   Mean concentrations and standard deviations (minimum-
maximum) of Hg and Cd (µg g−1 dry weight) in muscle of the Pacific 
sharpnose shark from the SE Gulf of California

* Significantly different

Sex n Hg Cd

Females 8 1.24 ± 0.44 (0.21–1.67) 0.057 ± 0.040 (0.03–0.12)
Males 20 1.28 ± 0.82 (0.21–2.17) 0.060 ± 0.058 (0.02–0.21)
All 28 1.27 ± 0.72 (0.21–2.17)* 0.059 ± 0.053 (0.02–0.21)*
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