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A B S T R A C T   

Large marine predators exhibit high concentrations of mercury (Hg) as neurotoxic methylmercury, and the 
potential impacts of global change on Hg contamination in these species remain highly debated. Current 
contaminant model predictions do not account for intraspecific variability in Hg exposure and may fail to reflect 
the diversity of future Hg levels among conspecific populations or individuals, especially for top predators 
displaying a wide range of ecological traits. Here, we used Hg isotopic compositions to show that Hg exposure 
sources varied significantly between and within three populations of white sharks (Carcharodon carcharias) with 
contrasting ecology: the north-eastern Pacific, eastern Australasian, and south-western Australasian populations. 
Through Δ200Hg signatures in shark tissues, we found that atmospheric Hg deposition pathways to the marine 
environment differed between coastal and offshore habitats. Discrepancies in δ202Hg and Δ199Hg signatures 
among white sharks provided evidence for intraspecific exposure to distinct sources of marine methylmercury, 
attributed to population and ontogenetic shifts in foraging habitat and prey composition. We finally observed a 
strong divergence in Hg accumulation rates between populations, leading to three times higher Hg concentra
tions in large Australasian sharks compared to north-eastern Pacific sharks, and likely due to different trophic 
strategies adopted by adult sharks across populations. This study illustrates the variety of Hg exposure sources 
and bioaccumulation patterns that can be found within a single species and suggests that intraspecific variability 
needs to be considered when assessing future trajectories of Hg levels in marine predators.   

1. Introduction 

The Anthropocene era has led to the global decline of shark pop
ulations, due to overfishing, bycatch, and other indirect threats 
including habitat loss and changes in prey availability (Baum et al., 
2003; Myers and Worm, 2003; Ferretti et al., 2018; Dulvy et al., 2021). 
Removing predators can result in trophic cascading effects impairing the 
structure and functioning of marine ecosystems (Heithaus et al., 2008; 

Ferretti et al., 2010; Pimiento et al., 2020). In this context, it has recently 
been suggested that the white shark (Carcharodon carcharias), the 
world’s largest predatory fish, may become extinct during the 21st 
century, along with its ecosystem role as apex predator (Pimiento et al., 
2020). Despite a global decline in abundance over the past half century, 
the different populations of white sharks do not follow the same tra
jectories (Pacoureau et al., 2021). While some populations are consid
ered stable, including in eastern Australasia (Davenport et al., 2021), a 
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decrease in the abundance of white sharks has been observed in other 
regions, such as the Mediterranean sea (Moro et al., 2020). 

White sharks are highly mobile, generalist predators with foraging 
plasticity encompassing a wide range of prey and habitats (Huveneers 
et al., 2018). In the north-eastern Pacific (NEP), white sharks perform 
seasonal migrations from inshore seal colonies to offshore areas where 
they likely forage on deep mesopelagic prey (Le Croizier et al., 2020a; 
Jorgensen et al., 2010). In Australian waters, white sharks are divided 
into two populations, namely the eastern Australasian (EA) and 
south-western Australasian (SWA) populations (Blower et al., 2012). In 
the SWA population, although occasional offshore movements were 
observed, immature and adult sharks mainly occupy coastal waters on 
the continental shelf where they primarily target locally abundant pin
nipeds (Bradford et al., 2020; Bruce et al., 2006; Meyer et al., 2019). 
Conversely, EA sharks show an ontogenetic (developmental) shift in 
habitat use, with immature sharks being mainly restricted to coastal 
waters (Spaet et al., 2020; Bruce et al., 2019) and larger individuals 
performing wide-spread movements across ocean basins to New Zealand 
and tropical Pacific islands (Duffy et al., 2012; Bonfil et al., 2010). As the 
east coast of Australia is devoid of primary seal colonies, coastal fish are 
the predominant prey for immature EA sharks (Grainger et al., 2020). 

Mercury (Hg) is a global pollutant of particular concern to human 
and wildlife health. Mercury is emitted to the atmosphere from natural 
and anthropogenic sources and largely deposited to the surface ocean, 
where a fraction is converted to methylmercury (MeHg) by microor
ganisms (Driscoll et al., 2013). Methylmercury is characterized by 
strong neurotoxicity, bioaccumulation in marine biota and unique bio
magnification properties in food webs (Kidd et al., 2011). Due to their 
longevity and high trophic level, white sharks are among the marine 
species displaying the highest concentrations of Hg, assumed to be 
predominantly MeHg (Le Croizier et al., 2020a; McKinney et al., 2016). 
The impact of Hg exposure on shark neurophysiology is still poorly 
understood (Ehnert-Russo and Gelsleichter, 2020; Rodrigues et al., 
2021) and shark species could exhibit metabolic mechanisms allowing 
them to reduce toxicity, such as in vivo demethylation of MeHg (Le 
Croizier et al., 2020b). However, the particularly high Hg concentra
tions found in white sharks likely induce deleterious effects (e.g. damage 
to the central nervous system, loss of neurons, sensory and motor defi
cits, oxidative stress) as observed in marine mammals and other shark 
species (Rodrigues et al., 2021; Krey et al., 2015; López-Berenguer et al., 
2020) and represent an additional pressure on this vulnerable species. 

In the context of global change, the future trend of Hg concentrations 
in marine predators remains uncertain. Empirical studies do not reach 
consensus, as a decrease (Lee et al., 2016; Bank et al., 2021), stability 
(Médieu et al., 2021; Yurkowski et al., 2020; Renedo et al., 2021) or 
increase (Drevnick et al., 2015; Dietz et al., 2021; Vo et al., 2011) in 
predator Hg content has been observed over the past decades, depending 
on the species and regions considered. Most model projections predict 
increased Hg levels in meso and top predators under different scenarios 
of seawater warming and dietary changes due to overfishing of prey 
stocks (Schartup et al., 2019; Alava et al., 2018; Booth and Zeller, 2005). 
However, current predictions ignore the foraging plasticity and wide 
range of ecological traits of apex predators such as white sharks. This 
could mask the heterogeneity in future contamination patterns within a 
single species, as individual foraging strategies have been shown to in
fluence Hg exposure and ultimately Hg levels in mesopredators (Peter
son et al., 2015). It is therefore essential to characterize and understand 
intraspecific variability in Hg exposure to better predict the effects of 
global change on predator contamination and marine ecosystem health. 

In recent years, the measurement of the natural abundances of Hg 
stable isotopes has greatly improved knowledge on the sources of 
exposure, transfer pathways, and metabolism of Hg in marine consumers 
(Blum et al., 2013; Renedo et al., 2018; Li et al., 2020). Many abiotic (e. 
g. photoreduction, volatilization) (Bergquist and Blum, 2007; Zheng 
et al., 2007) and biotic processes (e.g. methylation, demethylation) (Le 
Croizier et al., 2020b; Perrot et al., 2016; Janssen et al., 2016) result in 

mass-dependent isotope fractionation (MDF, reported as δ202Hg), 
whereas mass-independent fractionation of odd-mass number isotopes 
(odd-MIF, reported as Δ199Hg or Δ201Hg) has been primarily observed 
during aquatic photochemical reactions (Bergquist and Blum, 2007). In 
addition, significant MIF of even-mass number isotopes (even-MIF, re
ported as Δ200Hg) is thought to occur via Hg photochemistry in the 
upper atmosphere (Chen et al., 2012). The analysis of Hg isotopes in 
marine biota therefore provides information about atmospheric Hg 
deposition pathways to the marine environment (Jiskra et al., 2021), Hg 
methylation / demethylation processes in the water column and sedi
ments (Tsui et al., 2020), as well as on species biology and ecology, such 
as Hg metabolism and foraging habitat (Le Croizier et al., 2020a; Le 
Croizier et al., 2020b). Mercury isotopes have been successfully used to 
distinguish Hg exposure between sedentary, low trophic level marine 
fish populations (Cransveld et al., 2017; Pinzone et al., 2021). However, 
uncertainty remains regarding the possibility of applying this method to 
assess intraspecific variability in Hg exposure in highly mobile top 
predators such as white sharks. 

To evaluate intraspecific variability in Hg contamination in marine 
apex predators, we tested the capability of Hg isotopes to identify dif
ferences in Hg exposure among three white shark populations (NEP, 
SWA, and EA) with contrasting ecology and large spatial scales. We 
discussed the potential links between Hg sources and the known 
ecological characteristics of these populations. We also sought to 
describe the dynamics of Hg bioaccumulation within each population. 
We hypothesized that Hg exposure and levels may vary between pop
ulations, making the assessment of Hg fate in marine predators under 
global change more complex than previously thought. 

2. Materials and methods 

2.1. Sample collection 

2.1.1. North-eastern Pacific population 
White sharks (n = 30) were sampled at Guadalupe Island (Mexico) 

between September and November in 2016, 2017 and 2018 (Fig. 1). 
Free-swimming white sharks were attracted with bait near the research 
vessel. Muscle samples were taken using a biopsy probe targeting the 
tissue directly below the dorsal fin. After collection, samples were 
immediately transferred to a − 20 ◦C freezer onboard the vessel. 

2.1.2. South-western Australasian population 
White shark samples (n = 40) were collected from January 2015 to 

July 2020 at the Neptune Islands Group Marine Park, South Australia 
(Fig. 1), where free-swimming sharks were targeted opportunistically 
throughout the year during standard cage-diving operations. Sharks 
were attracted to the cage-diving vessels using a combination of at
tractants. Biopsies were taken from diving cages or from the surface 
using a single 20-mm rubber speargun, with the end of the 1.3 m spear 
modified into a hollow 1 cm diameter stainless steel biopsy probe 
(Meyer et al., 2018), targeting the dorsal or upper flank musculature 
directly below the dorsal fin. Biopsies were immediately frozen (− 4 ◦C) 
and transported to the laboratory where white muscle tissue was 
dissected from the sub-dermal tissue and skin. 

2.1.3. Eastern Australasian population 
White sharks (n = 44) were sampled along the east coast of New 

South Wales, Australia (within a radius of ~30 km around the town of 
Ballina, Fig. 1) between 2016 and 2020, using SMART drumlines as part 
of a bather protection research program (Tate et al., 2021; Tate et al., 
2019). After capture, sharks were secured to the side of the vessel and a 
muscle sample was taken using an 0.8 cm sterile biopsy punch (Kai 
medical) targeting the tissue directly behind the dorsal fin. Tissue 
samples were immediately placed into a 5 mL screw cap vial on ice and 
transferred to a − 4 ◦C freezer. 

Individual sharks from all three populations (NEP, SWA, and EA) 
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were sexed (based on clasper presence/absence), and total length was 
measured to the nearest 10 cm using visual size estimates (NEP and 
SWA) (May et al., 2019) or to the nearest 1 cm using a certified tape (EA) 
(Tate et al., 2021; Tate et al., 2019). 

2.2. Mercury concentration analysis 

Once in the laboratory, muscle samples were lyophilized and ho
mogenized using an electric grinder that was rinsed with alcohol be
tween samples (Fig. S1). Total Hg (THg) concentration was determined 
on aliquots (around 10 mg) of homogenized samples by combustion, 
gold trapping and atomic absorption spectrophotometry using a DMA80 
analyzer (Milestone, USA). As THg is predominantly in the MeHg form 
in shark muscle (Le Croizier et al., 2020b; Matulik et al., 2017; Pethy
bridge et al., 2010a; de Carvalho et al., 2014; Bosch et al., 2016; Nalluri 
et al., 2014), THg was used as a proxy for MeHg concentration, in 
accordance with previous studies (Le Croizier et al., 2020a; Besnard 
et al., 2021). Total Hg concentrations in samples are expressed on a dry 
weight basis (µg⋅g− 1 dw). Only one analysis was performed per sample, 
but the accuracy and reproducibility of the method were established 
using two freeze-dried certified biological materials: a tuna fish flesh 
homogenate reference material (IAEA 436, IRMM) and a lobster 

hepatopancreas reference material (TORT 3, NRCC). The certified 
values for IAEA 436 (4.19 ± 0.36 μg⋅g− 1 dw, n = 10) were reproduced 
(measured value: 4.33 ± 0.19 μg⋅g− 1 dw) within the confidence limits. 
The certified values for TORT 3 (0.292 ± 0.022 μg⋅g− 1 dw) were also 
reproduced (measured value: 0.286 ± 0.024 μg⋅g− 1 dw, n = 10) within 
the confidence limits. The detection limit was 0.005 μg⋅g− 1 dw. 

2.3. Mercury isotope analysis 

Aliquots of approximately 10 mg of dry muscle were left over night 
(~12 h) at ambient room temperature in 3 mL of concentrated bi- 
distilled nitric acid (HNO3). A volume of 1 mL of hydrogen peroxide 
(H2O2) was added, and samples were digested on a hotplate for 6 h at 
100 ◦C. A volume of 100 µL of BrCl was then added to ensure a full 
conversion of MeHg to inorganic Hg. The digest mixtures were finally 
diluted in inverse aqua regia (3 HNO3: 1 HCl, 20 vol% MilliQ water) to 
reach a nominal Hg concentration of 1 ng⋅g− 1. Certified reference ma
terials (ERM-BCR-464) and blanks were prepared in the same way as 
tissue samples. Mercury isotope composition was measured by multi- 
collector inductively coupled plasma mass spectrometry 
(MC− ICP− MS, Thermo Finnigan Neptune Plus) with continuous-flow 
cold vapor (CV) generation using Sn (II) reduction (CETAC HGX-200). 

Fig. 1. Map of the spatial distribution of white sharks from the north-eastern Pacific (NEP), eastern Australasian (EA) and south-western Australasian (SWA) 
populations. Sample collection sites are figured (*). 
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Mercury isotope ratios are expressed in δ notation and reported in parts 
per thousand (‰) deviation from the NIST SRM 3133 standard, 
following sample-standard bracketing according to the following equa
tion: δXXXHg (‰) = [ (XXXHg/198Hg)sample / (XXXHg/198Hg)NIST 3133) 
− 1] X 1000 where xxx represents the mass of each mercury isotope. 
δ202Hg represents Hg MDF, and Δ notation is used to express Hg MIF by 
the following equation:  

ΔxxxHg (‰) = δxxxHg – (δ202Hg X a)                                                      

where a = 0.2520, 0.5024 and 0.7520 for isotopes 199, 200 and 201, 
respectively. 

Total Hg in the diluted solutions was quantified by MC-ICP-MS using 
202Hg signals: mean recoveries of 98 ± 11% (n = 84) for samples and 
96 ± 6 % (n = 12) for certified reference materials were found. Mercury 
levels in blanks were below the detection limit of 0.005 ng⋅g− 1. Repro
ducibility of Hg isotope measurements was assessed by analyzing UM- 
Almadén (n = 24), ETH-Fluka (n = 22) and the biological tissue pro
cedural standard ERM-BCR-464 (n = 12) (Table S1). Measured isotope 
signatures as well as analytical reproducibility of standards (UM- 
Almadén, ETH-Fluka and ERM-BCR-464) were found to be in agreement 
with previously published values (Blum et al., 2013; Masbou et al., 
2013; Jiskra et al., 2017) (Table S1). Duplicate analysis was performed 
on a subset of 15 white shark tissues to assess the analytical uncertainty 
of δ202Hg (2 SD = 0.12‰) and Δ199Hg values (2 SD = 0.10‰) in the 
samples. 

2.4. Data analysis 

For comparison of Hg isotope signatures among white shark pop
ulations, data were first checked for normality (Shapiro–Wilk tests) and 
homogeneity of variances (Bartlett tests). One-way analyses of variance 
(ANOVAs) were applied when these conditions were met, followed by 
Tukey’s HSD tests. In the absence of homoscedasticity, Welch’s ANOVAs 
with Games-Howell post-hoc tests were used. Linear regressions were 
used to assess relationships between different Hg isotope values, be
tween Hg concentration and shark length, or between Hg isotope values 
and shark length. Analyses of covariance (ANCOVAs) were used to 
compare Hg accumulation rates between populations. Generalized 
linear models (GLMs) were used to evaluate the influence of population, 
shark length, gender, and Hg isotope values (Δ200Hg, Δ199Hg and 
δ202Hg) on Hg levels. Based on the analysis of the residuals, a Gaussian 
distribution and identity link function were used in the GLMs. The 
models were built using backward stepwise selection, ranked based on 
Akaïke’s Information Criteria adjusted for small sample sizes (AICc) and 
compared using ΔAICc and Akaike weights (wi). All statistical analyses 
were performed using the open source software R (4.1.1 version). 

3. Results and discussion 

3.1. Atmospheric Hg deposition pathways 

White shark Δ200Hg values were close to zero in all three populations 
(Table 1). The Δ200Hg signature has previously been used as a 

conservative tracer of atmospheric Hg deposition pathways (Lepak 
et al., 2018; Masbou et al., 2018). The deposited Hg subsequently be
comes the substrate for MeHg production in marine environments. 
Δ200Hg mainly discriminates between dissolution of gaseous Hg(0) 
(slightly negative Δ200Hg of − 0.05‰) and wet and dry deposition of 
inorganic Hg(II) through precipitation and dry deposition (positive 
Δ200Hg values of 0.14‰) (Enrico et al., 2016). Terrestrial plants and 
soils have been shown to take up atmospheric Hg(0), and continental 
runoff by rivers to the oceans thus constitutes an additional Hg source 
with Δ200Hg similar to Hg(0) (Obrist et al., 2017). As coastal food webs 
receive Hg from all three sources, their Δ200Hg values are generally 
closer to the Hg(0) than the Hg(II) end-member (Masbou et al., 2018; 
Meng et al., 2020). Conversely, pelagic ecosystems show equal contri
butions of Hg(0) and Hg(II) deposition, resulting in Δ200Hg signatures 
around 0.05‰ (Lepak et al., 2018; Motta et al., 2019). Here, the mean 
Δ200Hg values of 0.06, 0.04, and 0.03‰ for NEP, EA and SWA pop
ulations respectively (Table 1) would thus reflect an equivalent contri
bution of Hg(0) and Hg(II) sources, characteristic of pelagic 
environments (Jiskra et al., 2021). However, the NEP population dis
played a significantly higher Δ200Hg than the SWA population 
(p < 0.05, Fig. 2A), with EA sharks showing intermediate values. 
Despite the small magnitude of even-MIF, Δ200Hg values revealed a 
greater contribution of Hg(II) inputs in the NEP population compared to 
SWA sharks. This hypothesis agrees with a previous study showing that 
NEP white sharks were dietary exposed to mesopelagic MeHg (Le 
Croizier et al., 2020a), which is mainly produced from Hg(II) supplied 
by precipitation and dry deposition in the subtropical Pacific (Motta 
et al., 2019). Although Hg isotope signatures of prey have not yet been 
characterized for Australasian sharks, movement data showed that SWA 
sharks primarily occupy coastal waters (Bradford et al., 2020; Bruce 
et al., 2006) (Table 1), which are believed to receive more Hg(0) inputs 
via continental runoff. The coastal affinity of SWA sharks, opposed to the 
pelagic foraging behavior of NEP sharks, could thus explain the varia
tions in Δ200Hg observed between these populations (i.e. higher Δ200Hg 
in NEP sharks, Fig. 2A). 

A recent global analysis of marine Δ200Hg (including particulate Hg, 
sediments, and biota) showed the occurrence of a latitudinal isotopic 
gradient, with lower Δ200Hg values at high latitudes, indicating larger 
ocean Hg(0) uptake compared to intermediate and tropical areas (Jiskra 
et al., 2021). However, this study reported similar Δ200Hg values at the 
latitudes corresponding to our sampling sites, i.e., around 30◦N and 30◦S 
(Fig. 1). The variability in Δ200Hg observed in our study seems to be 
governed by differences in atmospheric Hg sources between coastal and 
offshore shark habitats, rather than by a latitudinal gradient in Δ200Hg 
at the global scale. 

4. Marine MeHg sources 

Mercury odd-MIF signatures in marine biota are not affected by 
trophic transfers or metabolic processes (Perrot et al., 2016; Kwon et al., 
2012) and are specifically derived from the photodegradation of MeHg 
in seawater prior to food web biomagnification (Blum et al., 2013). 
Although similar Δ201Hg/Δ199Hg ratios across regions suggest a com
mon mechanism for MeHg photodegradation (Fig. S2 and additional 

Table 1 
Summary of Hg analyses (mean ± standard deviation) carried out in white shark muscle. Shark length is indicated as mean (range). Habitat characteristics are reported 
according to previous studies (Jorgensen et al., 2010; He et al., 2017; Bradford et al., 2020; Spaet et al., 2020).  

Population n Total 
length (m) 

Maturity 
stage 

THg (µg٠٠g-1) δ202Hg (‰) Δ199Hg 
(‰) 

Δ200Hg 
(‰) 

Vertical 
habitat 

Horizontal 
habitat 

Secchi 
depth 

North-eastern Pacific 
(NEP)  

30 3.1 
(2.0–5.0) 

Juvenile to 
adult  

10.58 ± 2.64  0.88 ± 0.25  1.54 ± 0.18  0.06 ± 0.03 Epi to 
mesopelagic 

In to offshore  50 

Eastern Australasian 
(EA)  

44 2.4 
(1.6–3.5) 

Juvenile to 
subadult  

10.50 ± 5.51  0.92 ± 0.25  1.25 ± 0.19  0.04 ± 0.05 Epipelagic Continental 
shelf  

30 

South-western 
Australasian (SWA)  

40 3.2 
(1.8–4.7) 

Juvenile to 
adult  

18.31 ± 8.08  1.43 ± 0.40  1.69 ± 0.19  0.03 ± 0.05 Epipelagic Continental 
shelf  

30  
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discussion), we found significant variations in Δ199Hg values between 
populations (p < 0.01, Fig. 2B), indicating exposure to distinct MeHg 
pools that experienced different intensities of photodegradation. In the 
open ocean or near offshore islands, where marine organisms are mainly 
exposed to pelagic MeHg, fish species are characterized by Δ199Hg 
values generally higher than 1‰ (Le Croizier et al., 2020b; Blum et al., 
2013; Sackett et al., 2017). Conversely, marine fishes exposed to MeHg 
produced in coastal sediments or turbid waters, where light penetration 
is limited, display significantly lower Δ199Hg values (typically lying 
between 0‰ and 1‰) (Meng et al., 2020; Senn et al., 2010; Perrot et al., 
2019). In addition, as Hg photodegradation decreases with light atten
uation in the water column, Δ199Hg values generally decrease with 
increasing foraging depth in marine fishes (Blum et al., 2013; Le Croizier 
et al., 2020b; Sackett et al., 2017). Δ199Hg values in a marine predator 
may thus reflect vertical or horizontal habitat use, or a combination of 
both, depending on the environment considered (Sun et al., 2021). As it 
was previously shown that NEP sharks are primarily exposed to deep 
and offshore MeHg (Le Croizier et al., 2020a), and SWA and EA sharks 
occupy mainly coastal and shallow habitats (Bradford et al., 2020; Bruce 
et al., 2006; Spaet et al., 2020; Bruce et al., 2019), Δ199Hg signatures 
were expected to differ between NEP and Australasian populations, as 
observed in our dataset (Fig. 2B). Surprisingly, the NEP population 
showed a Δ199Hg of 1.54‰, which fell between the Δ199Hg of SWA and 
EA populations (1.69 and 1.25‰, respectively) (Table 1). Photochem
ical degradation of MeHg in epipelagic layers is known to vary globally, 
primarily related to water clarity and UV penetration depth (Motta et al., 
2020). Differences in habitat characteristics and water clarity (based on 
Secchi depth; Table 1) therefore suggest variations in Δ199Hg baselines 
across distant regions, complicating direct comparison of NEP and 
Australasian populations. By focusing on spatially close populations, a 
gap in Δ199Hg values was also observed between SWA and EA sharks, 
despite an apparent similarity in vertical and horizontal habitat use for 
the size classes considered (Bradford et al., 2020; Bruce et al., 2006; 
Spaet et al., 2020; Bruce et al., 2019), and in average water clarity in 
both regions (He et al., 2017) (Table 1). However, when closely exam
ining the fine-scale distribution in the water column, SWA sharks were 
observed to primarily occupy the upper 50 m (Bradford et al., 2020), 
while EA sharks were most abundant between 50 and 130 m depth (Lee 
et al., 2021). As the MeHg photodegradation gradient is steep in shallow 
depths (Blum et al., 2013; Le Croizier et al., 2020a), this inconspicuous 
but significant difference in vertical habitat is consistent with the 
Δ199Hg variation observed between Australasian (SWA and EA) pop
ulations. This exemplifies the ability and sensitivity of the Δ199Hg tracer 
to capture slight variations in vertical habitat used by nearby predator 
populations. 

Although many biotic and abiotic processes affect Hg MDF, hepatic 
MeHg demethylation has been identified as one of the major mecha
nisms leading to increased δ202Hg values in the muscle tissue of 

predators such as marine mammals (Li et al., 2020; Perrot et al., 2016), 
seabirds (Poulin et al., 2021; Renedo et al., 2021), and sharks (Le 
Croizier et al., 2020b; Besnard et al., 2021). The preferential demethy
lation of light Hg isotopes in the liver increases δ202Hg in the remaining 
MeHg pool, a fraction of which is ultimately stored in muscle (Perrot 
et al., 2016; Poulin et al., 2021). Here, we found high δ202Hg values (up 
to 1.43‰ in the SWA population; Table 1) and near zero Δ199Hg/δ202Hg 
slopes (Fig. S3 and additional discussion) which may suggest substantial 
MeHg demethylation in white sharks, as previously established for other 
large species such as bull and tiger sharks (Le Croizier et al., 2020b). 
Alternatively, it may result from the consumption of marine mammals, 
which can represent an important part of the white shark diet (Grainger 
et al., 2020; Hussey et al., 2012) and which also display elevated δ202Hg 
values due to MeHg demethylation (Perrot et al., 2016; Bolea-Fernández 
et al., 2019). The higher δ202Hg found in SWA sharks compared to the 
NEP and EA populations (Fig. 2) could thus be the result of either higher 
demethylation or more frequent consumption of marine mammals. In 
our study, SWA sharks had much higher Hg concentrations than NEP 
sharks (Table 1), which does not support the hypothesis of higher 
demethylation. However, the second hypothesis is supported by the 
modest contribution of mammals to Hg exposure of NEP sharks (Le 
Croizier et al., 2020a) and dietary intake of immature EA sharks 
(Grainger et al., 2020), while the SWA shark samples were collected 
near a large colony of pinnipeds (Neptune Islands Group Marine Park; 
Fig. 1). 

5. Individual variability in Hg exposure 

No variation in Hg isotope signatures related to gender or body 
length has been previously found in NEP sharks, suggesting a common 
Hg exposure at the population scale (Le Croizier et al., 2020a). 
Conversely, ontogenetic variability was observed here within the two 
Australasian populations. In the EA population, Δ199Hg was positively 
correlated with shark total length (Fig. 3A). Previous studies of the EA 
white shark population have shown an ontogenetic increase in travelling 
behavior (Lee et al., 2021), with coastal areas dominated by small 
immature individuals (Spaet et al., 2020; Bruce et al., 2019; Grainger 
et al., 2020; Spaet et al., 2020) and large sharks more likely to undertake 
large-scale offshore migrations (Duffy et al., 2012; Bonfil et al., 2010; 
Francis et al., 2015). Such an increase in offshore dispersal would result 
in greater exposure to pelagic MeHg sources, typically characterized by 
higher Δ199Hg values (Le Croizier et al., 2020b; Blum et al., 2013; 
Sackett et al., 2017) than MeHg produced in coastal habitats (Meng 
et al., 2020; Senn et al., 2010; Perrot et al., 2019), and would explain the 
ontogenetic variation in Δ199Hg found in EA sharks. 

In SWA sharks, both δ202Hg and Δ200Hg were found to increase with 
size (Figs. 3B, 3C). Mercury metabolism in sharks is supposed to increase 
δ202Hg values over time, through enhanced MeHg demethylation in 

Fig. 2. Raw data points, boxplots and data distribution of A) Δ200Hg, B) Δ199Hg and C) δ202Hg values in the muscle of different white shark populations: the north- 
eastern Pacific (NEP), eastern Australasian (EA) and south-western Australasian (SWA) populations. Different letters indicate significant differences between pop
ulations (ANOVAs; p < 0.05). 
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older individuals (Le Croizier et al., 2020b). In addition, white sharks 
are known to increase their consumption of marine mammals as they 
grow larger (Hussey et al., 2012), which may increase the uptake of 
MeHg with δ202Hg higher values (Le Croizier et al., 2020a). It is there
fore difficult to deconvolute the different mechanisms (Hg metabolism, 
change in prey) responsible for ontogenetic variations in the δ202Hg 
signature. However, as δ202Hg values did not increased with size in NEP 
and EA populations, changes in δ202Hg are unlikely to be caused by 
metabolism alone. Considering that oceanic Δ200Hg baselines are 
generally slightly higher than coastal baselines (Lepak et al., 2018; Meng 
et al., 2020; Motta et al., 2019), the higher Δ200Hg observed in large 
SWA sharks suggests an ontogenetic increase in offshore movements in 
this population. This is consistent with a recent tracking study doc
umenting movements of large SWA sharks (> 4.5 m) off the continental 
shelf and suggesting that females may disperse further offshore than 
males (Bradford et al., 2020). While we did not observe differences in Hg 
exposure between sexes, Δ200Hg values provide evidence for an onto
genetic change in foraging habitat in the SWA population. 

6. Mercury bioaccumulation 

Log-transformed THg concentrations were positively correlated with 
shark length (a proxy for age) in Australasian sharks (Fig. 4) and the log 
(THg)/length slopes were similar in SWA and EA populations (ANCOVA, 
p > 0.05). These results indicate a comparable rate of Hg bio
accumulation in the two Australasian populations. Methylmercury bio
accumulation in fish muscle results from a high MeHg assimilation 

efficiency, strong binding to cysteine residues of proteins and low 
excretion rate (Wang and Wong, 2003; Manceau et al., 2021). Moreover, 
MeHg stored in muscle comes from the residual blood MeHg exiting 
from the liver after in vivo demethylation. As MeHg is the dominant 
form of Hg in shark muscle (Le Croizier et al., 2020b; Matulik et al., 
2017; de Carvalho et al., 2014), increased Hg concentration in the 
muscle of Australasian sharks may imply that trophic exposure to MeHg 
exceeds demethylation capacity. Our findings are consistent with a 
previous study which observed an increase in Hg concentration with size 
in juvenile EA individuals (Gilbert et al., 2015). In contrast, no increase 
in Hg concentration with age was observed in NEP sharks (Fig. 4), 
suggesting a balance between MeHg exposure and demethylation/ex
cretion. Consequently, while Hg concentrations were similar in all three 
populations for smaller sharks (i.e., 11 and 12 μg⋅g− 1 dw at 2.5 m total 
length for Australasian and NEP sharks, respectively), Australasian 
populations were three times more contaminated than the NEP popu
lation for larger sharks (e.g., 30 versus 10 μg⋅g− 1 dw at 4.5 m total 
length for SWA and NEP sharks, respectively; Fig. S4). 

Similar muscle Hg concentrations observed in young white sharks do 
not argue for variations in marine MeHg baselines across regions. 
However, the difference in Hg accumulation kinetics found between 
Australasian and NEP populations (Fig. 4) could be related to different 
trophic strategies adopted by adult sharks. While δ202Hg values suggest 
a size-based increase in MeHg uptake from marine mammals con
sumption in SWA sharks (Fig. 3B), the NEP population is thought to be 
primarily exposed to MeHg from mesopelagic prey with limited contri
bution from pinnipeds, regardless of size (Le Croizier et al., 2020a). As 
predators, marine mammals generally display higher Hg content than 
mid-trophic mesopelagic species (Kemper et al., 1994; Pethybridge 
et al., 2010b). A greater proportion of mammals in the diet of adult SWA 
sharks could thus partly explain their higher δ202Hg values and Hg 
concentrations compared to the NEP population. This assumption is 
consistent with the outputs of generalized linear models used to predict 
Hg levels in white shark muscle. The top-ranked model (wi = 0.60) 
included δ202Hg, length and population, and δ202Hg was the best 
stand-alone predictor of Hg concentration, explaining 36% of Hg vari
ation in shark muscle (Table S2). This result revealed that consumption 
of marine mammals (exhibiting high δ202Hg values (Le Croizier et al., 
2020a) could be a major driver of Hg levels in white sharks. In the 
future, this hypothesis can be verified by comparing the trophic level of 
adult sharks from the NEP and Australasian populations, but may 
require the use of amino acid nitrogen isotopic analysis to overcome 
spatial variations in isotopic baselines (Ohkouchi et al., 2017). 

7. Conclusion 

Global change is expected to influence Hg contamination in marine 
biota, yet intra-species differences in Hg exposure are rarely considered. 
Here, we applied for the first time the recent technique of Hg isotope 

Fig. 3. Relationships between A) Δ199Hg, B) δ202Hg and C) Δ200Hg values and body length in the eastern Australasian (EA) and south-western Australasian (SWA) 
populations. Data fits a linear regression in A) R2 = 0.40, p < 0.001; B) R2 = 0.49, p < 0.001 and C) R2 = 0.26, p < 0.01. 

Fig. 4. Relationships between log-transformed Hg concentration and total 
length (m) in the muscle of different white shark populations: the north-eastern 
Pacific (NEP), eastern Australasian (EA) and south-western Australasian (SWA) 
populations. Data fits a linear regression in the EA (R2 =0.41, p < 0.001) and 
SWA (R2 =0.50, p < 0.001) populations, but not in the NEP popula
tion (p > 0.05). 
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analysis to characterize dietary Hg exposure across different populations 
of white sharks, the world’s largest predatory fish. Our results revealed 
that the broad ecological spectrum of white sharks implies exposure to 
different sources of Hg among individuals, likely leading to the marked 
differences in Hg bioaccumulation patterns observed between pop
ulations. Given this large intraspecific variability, predicting Hg levels in 
marine predators under global change could be more complex than 
previously thought. Future modelling research should therefore focus on 
a widely distributed top predator model species and account for popu
lation variations in Hg exposure and concentration to improve pro
jections of predator Hg levels at the global scale. 
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