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Abstract
The blue shark (Prionace glauca) is the most commonly caught species of Elasmobranchii at the entrance to the Gulf of 
California. Although fins are the primary target commodity, the entire organism is consumed. This study examined the 
concentration of Hg and Se in muscle and liver to understand the antagonistic process that occurs between these two ele-
ments within the organism. Twenty-two individuals were captured at the Gulf of California inlet between September 2019 
and March 2021. Hg was measured by cold vapor atomic absorption, and Se by atomic absorption spectrophotometry in a 
graphite furnace. All individuals studied showed higher concentrations (µg g−1 wet weight) of Hg (0.69) and Se (2.49) in 
liver than in muscle (Hg 0.63 and Se 0.08). Although the mean Hg values were below the maximum allowable limits (Hg 
1.0 µg g−1 wet weight), the molar ratio (< 1.0) and the negative health benefit value of selenium (HBVSe) in muscle show that 
additional caution should be taken when consuming this species. We recommend a more thorough study of the antagonistic 
interaction between Hg and Se to accurately assess the health risk for consumers of blue shark.

Interest in food safety has grown over the past two decades 
worldwide as hazardous compounds are now recognized as 
a global concern for human health (Cappello et al. 2018). 
Although seafood is a source of high-quality protein, the 
presence of highly toxic contaminants in their edible tis-
sues represents a potential risk; in addition, the presence of 
“obesogens” and “metabolic disruptors” extended the list of 
chemical components with harmful effects (Maisano et al. 
2016). As a pollutant in the aquatic environment, mercury 
(Hg) has been listed as one of “the ten leading chemicals” 

(O’Connor et al. 2019). The oceans play a significant role 
in the biogeochemical cycle of Hg (Kotnik et al. 2007); they 
can release it to the atmosphere or act as a sink (Mason and 
Sheu 2002). In addition to an increased risk to fish consum-
ers from pollutants such as Hg, ichthyofauna may also expe-
rience harmful impacts as a result of their trophic position. 
There is a wide range of effects of Hg on fish, but the key 
impacts involve morphological changes, altered behavior 
and biochemical, physiological and toxicokinetic modifica-
tions (Pereira et al. 2019).

Among the most concerning pollutants present in fish 
meat consumed by humans is Hg. Consistent findings have 
indicated that, in sharks, edible muscle tissue becomes 
the primary target organ for Hg accumulation, mainly in 
its organic form, and is associated with dietary exposure 
(Branco et al. 2007). In the case of liver, it has been recog-
nized as an important site for the storage of pollutants, Hg 
transformation, detoxification and redistribution (Berntssen 
et al. 2003; Régine et al. 2006; Ung et al. 2010). Once Hg 
enters the organism, its distribution throughout the various 
tissues depends on several conditions such as taxa (metabo-
lism) and the way the metallic form interacts (Coelho and 
Erzini 2008; Mieiro et al. 2012).

Hg enters the marine environment naturally mainly 
through atmospheric transport and deposition, and it is 
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released anthropogenically through industrial and urban 
waste, mining and agriculture (Harris et al. 2012), causing 
harmful toxic effects on marine fauna (Eisler 2006). Upon 
entering the ocean in its inorganic form, its bioavailability 
increases through methylation by microbial activity (Sun-
derland et al. 2009), resulting in methylmercury (MeHg), 
which is incorporated, bioaccumulated and eventually 
biomagnified (Biton-Porsmoguer et al. 2022; Lavoie et al. 
2013; Le Bourg et al. 2019). As a result, large and long-lived 
predators, including many shark species, exhibit high Hg 
concentrations (Schartup et al. 2019), predominantly in the 
methyl mercury (MeHg) form (Carvalho et al. 2014). Along-
side these processes, Hg accumulation in marine top preda-
tors appears to be also driven by other physiological (e.g., 
metabolism, ontogeny, detoxification) (Bolea-Fernandez 
et al. 2019), ecological (e.g., habitat, systems productivity, 
food web structure, foraging depth) (Senn et al. 2010; Lavoie 
et al. 2013; Ferriss and Essington 2014; Le Croizier et al. 
2019a, b) and physicochemical parameters (e.g., oxygen 
level, sea temperature) (Le Bourg et al. 2019; Schartup et al. 
2019; Houssard et al. 2019). Once in the body, Hg builds up 
gradually, reaching high concentrations in the tissues of top 
predators (Frías-Espericueta et al. 2015), while, in contrast, 
Hg excretion is generally lower than its absorption rate. This 
process explains the levels of Hg close to, or above, the pre-
cautionary limits for human consumption detected in the 
edible muscle of Pacific predators (Escobar-Sánchez et al. 
2011; Lyons and Lowe 2013), which also affects the con-
servation efforts of these species, especially in the vivipa-
rous ones, by the pollutant’s transfer from the mother to her 
embryos (Lyons and Lowe 2013; Mull et al. 2013; Olin et al. 
2018). However, recent studies have emphasized the relevant 
interaction of this metal with selenium (Se), which counter-
acts the toxicity of Hg in organisms (Raymond and Ralston 
2009; Ralston et al. 2016) as it helps to protect the organ-
ism against Hg toxicity by balancing the sequestration and 
loss of Se by Hg (Kaneko and Ralston 2007). Consequently, 
maintaining optimal Se levels for normal synthesis and 
activities of essential selenoenzymes is of vital importance, 
especially for people exposed to MeHg (Ralston 2008). Se 
is both an essential and a toxic element, depending on the 
ingested dose (Yang et al. 2008). Either a deficiency or an 
excess of Se can be linked to adverse health effects depend-
ing on its chemical form (Vinceti et al. 2017, 2018). Con-
sequently, Se is considered a vital micronutrient involved 
in healthy cell function, such as free radical metabolism, 
reproductive functions, apoptosis and immunity (Kyriako-
poulos and Behne 2002; Taylor et al. 2009; Terrazas-López 
et al. 2019). Natural sources of Se are volcanic activity, 
marine salt spray and land emissions, while anthropogenic 
sources are nutritional by-products used in aquaculture and 
leachates from mining processes that, in some cases, are dis-
charged into water bodies (Blazina et al. 2016). This is how 

Se, through exposure and diet, is incorporated into marine 
organisms and biomagnified by humans through seafood 
consumption (Burridge et al. 2010; Ralston et al. 2016). One 
of the most commercially important top predators globally 
is the blue shark (Prionace glauca), with estimated catches 
of ~ 10 million individuals annually worldwide (Clarke et al. 
2006), it is also one of the main shark species caught in 
Mexico (Dulvy et al. 2014; Dent and Clarke 2015; Barreto 
et al. 2016). Previous studies in the Mexican North Pacific 
have reported high levels of Hg in muscle tissues of this 
species, which were above the maximum permissible limit 
of 1.0 μg g−1 wet weight (ww) for human consumption, and 
a low concentration of Se (Escobar-Sánchez et al. 2011). 
However, reports from the area near the entrance of the Gulf 
of California, one of the key fisheries for this species, are 
non-existent. The monitoring of Hg toxicity in commercial 
fish is of significant importance as it has a direct impact on 
public health and economic issues (Beltran-Pedreros et al. 
2011). In this study, we assessed the concentration of Hg and 
Se in blue shark (P. glauca), based on the hypothesis that 
bioaccumulation will occur, and evaluated the risk–benefit 
trade-offs for consumers by taking into account the antago-
nistic interactions between Hg and Se.

Materials and Methods

Sampling

The specimens of P. glauca were provided by two differ-
ent sources: from an oceanographic cruise coordinated by 
INAPESCA (National Institute of Fisheries and Aquaculture 
of Mexico) in the summer of 2019 (June–September); and 
from commercial fishing vessels arriving in the Mazatlán 
(Sinaloa) harbor in winter of 2021 (January–March). The 
fishing gear used in both cases was longlines settled during 
the night. The main area where sharks were captured is at 
the entrance of the Gulf of California (Fig. 1).
Sample Analysis

The collected specimens were frozen on board and trans-
ported to the laboratory where they were defrosted. Total 
weight (TW) and total length (TL) were obtained for each 
specimen. Sexual differentiation was recognized by the pres-
ence of claspers in males, and maturity was determined by 
size. Males are considered juveniles up to 183 cm TL, which 
is equivalent to an age of 8 years, and as adults, individuals 
above 184 cm (age > 8 years); and for females, individu-
als below 195 cm TL (age ≤ 8 years) were considered juve-
niles, and those above 196 cm TL were considered adults 
(age > 8 years) (Blanco-Parra 2003; Carrera-Fernández et al. 
2010). The specimens were dissected in the laboratory to 
obtain liver and muscle in 25 g aliquots which were frozen 
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at—20 °C awaiting the analysis process. In order to avoid 
contamination of samples during handling and processing 
in the laboratory, glassware and plastic utensils were acid-
washed (Moody and Lindstrom 1977). Muscle and liver 
samples were freeze-dried (−49 °C; 150 × 10–3 mBar; 72 h) 
and manually ground in an agate mortar. Homogenized pow-
dered samples were digested with concentrated (69%) nitric 
acid (trace metal grade, J.T. Baker) in capped vials for 3 h 
at 120 °C (MESL 1997). Se was analyzed by graphite fur-
nace atomic absorption spectrophotometry (GF-AAS) with 

a Zeeman correction using a model Analyst 800 instrument 
purchased from Perkin-Elmer (Waltham, MA, USA); the 
instrument was calibrated using a calibration curve from 0 to 
50 ng mL−1, the solution for calibration was prepared from 
a CertiPUR Merck Se standard solution of 1000 mg L−1. 
Hg was measured by cold vapor atomic absorption spec-
trophotometry (CV-AAS) using a model 410 A instrument 
purchased from Buck Scientific (East Norwalk, CT, USA); 
the equipment was calibrated with a calibration curve from 

Fig. 1   Position of the site (black dots) where the blue sharks were captured at the entrance of the Gulf of California. The polygon shows the 
minimum oxygen zone (MOZ) redefined by Álvarez-Rodríguez (2023)
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0 to 80 ng mL−1, the solution for calibration was prepared by 
using a Fluka Hg standard solution of 1000 mg L−1.

Quality Assurance and Quality Control

Quality control of elemental analyses included blanks, 
duplicates, ultrapure water (milli-Q, 18.2 MΩ cm), 
trace metal grade acids, and reference materials. Meas-
ured concentrations of Se (0.27 ± 0.08  µg  g−1) and Hg 
(0.34 ± 0.06 µg g−1) in reference material (dogfish muscle 
DORM-3) were consistent with the certified mean values 
of Se (0.346 ± 0.040 µg g−1) and Hg (0.355 ± 0.056 µg g−1). 
The precision estimated was between 2.5 and 11.6% and 
5.0–10.8% for Se and Hg, respectively. The limits of detec-
tion (two times the standard deviation of a blank) were 
1 × 10–5 µg g−1 for Se and 0.02 µg g−1 for Hg. Concentration 
units of Se and Hg are given as µg g−1 wet weight.

Estimation of selenium health benefit value (HBVSe) 
and statistical analysis

Hg concentrations in shark muscle were compared against 
the maximum allowable limits for fishery products estab-
lished in national and international legislation. (NOM 2009; 
Svobodová et al. 1993). The health risk to consumers of 
shark meat was assessed using the HBVSe proposed by 
Ralston et al. (2016); HBVSe is a risk assessment criterion 
based on the molar concentrations of MeHg and Se present 
in the fish muscle intended for consumption. In order to 
accurately represent the amount of physiological Se poten-
tially provided or lost relative to sequestration by the associ-
ated Hg, the relative amount of available Se is multiplied by 
the total amount of Hg and Se present in the feed sample. 
The index is calculated by factoring in the absolute and rela-
tive molar amounts of CH3Hg and Se present as follows: 
HBVSe = [(Se–Hg)/Se] x (Se + Hg) (Ralston et al. 2016). 
After checking the parameters (muscle Hg-Se and HBVSe 
concentration) for standardization, we used the nonparamet-
ric Mann–Whitney–Wilcoxon test to evaluate the possible 
significant differences between these variables by sex and 
maturity stage (R Core Team 2022). Size, represented by TL 
or TW, which are also correlated with age, was contrasted 
with Hg and Se concentration in muscle and liver tissue by 
sex using simple linear models.

Results and Discussion

Hg and Se Concentration in Muscle and Liver Tissue

Among the sharks studied, adult males were predominant 
(Table 1), an assumed bias in longline fisheries, due to the 
more opportunistic diet and deeper feeding area of males, 

they are more likely to get caught on hooks (Tovar-Ávila 
et al. 2016). As for Hg concentrations in muscle, no dif-
ferences were found between males and females (W = 29; 
p = 0.1775), but differences were found between juveniles 
and adults (W = 102; p = 0.0004). In the case of Se, signif-
icant differences between sexes or stages were not found 
(W = 59; p = 0.4494 for sex; W = 63; p = 0.8718 for stage) 
(Table 2). Although the mean values of Hg concentrations 
in age categories (adults and juveniles) and sex (females and 
males) of sharks (Table 2) did not exceed the international 
and national limits (1.0 µg g−1) permitted for edible shell-
fish, we could observe that adults showed a mean value close 
to the limit (0.8 µg g−1) and several maximum values above 
the threshold. In addition, Hg concentration values in adults 
were significantly different from those of juveniles, point-
ing to the bioaccumulation process, in which older/larger 
organisms (adults-older in length) exhibited considerably 
higher concentrations of this metal in muscle (Table 2). 
Fish, through the biomagnification pathway, are considered 
some of the most important sources of Se in the human 
diet (Hu et al. 2021). Although Se studies on sharks are 
mainly oriented to highlight its antagonism with Hg, most 
of them also show that the great variability of this element 
also depends on the combination of geoenvironmental influ-
ences and species-specific traits (Wyatt et al. 1996). The size 
effect may be a function of any one or diverse age-dependent 
parameters (Phillips 1980). It may depend on differences 
between the surface/volume ratio, as well as the metabolic 
and feeding rates of larger (older) and smaller (younger) 
individuals (Páez-Osuna et al. 1995). Several correlations of 
Hg and Se with size of specimens were found (Table 3). In 
the case of Hg, significant positive correlations were found 
between total length and Hg in muscle of males and females; 
on the contrary, a negative significant correlation was found 
between total length and Hg in liver of females. Total weight 
showed a positive significant correlation with Hg in muscle 
of males. Given the particular binding that occurs between 

Table 1   Sex and stage categories, abundance, mean total weight 
(± S.D.), and mean total length (± S.D.), of blue shark specimens 
from the entrance of the Gulf of California

Categories Number Total weight (kg) Total length (cm)

General 22 29.6 ± 11.6 187.8 ± 25.3
Females 6 26.3 ± 13.0 178.1 ± 21.5
Males 16 30.9 ± 11.2 191.5 ± 26.3
Juveniles 10 20.2 ± 6.2 165.6 ± 16.7
Adults 12 36.9 ± 9.7 206.4 ± 12.9
Males (juveniles) 5 19.6 ± 2.6 159.7 ± 15.4
Females (juveniles) 5 22.0 ± 7.8 171.5 ± 14.0
Males (adults) 11 36.0 ± 9.6 205.9 ± 13.5
Females (adults) 1 47.4 211.5
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the two elements (Se and Hg), most papers on this subject 
suggest that in muscle tissues a Se/Hg molar ratio (Se/Hg) 

greater than 1.0 would indicate a low risk to fish consumers 
(Gerson et al. 2020). However, Manceau et al. (2021) under 

Table 2   Mean concentrations 
(± S.D.) of Hg and Se (µg g−1 
wet weight) and Se/Hg molar 
ratio, in muscle (M) and liver 
(L) of the blue shark from 
the entrance of the Gulf of 
California

*  Significantly different

Category n Tissue Hg Se Se/Hg

General 22 M 0.63 ± 0.34 (0.19–1.47) 0.08 ± 0.06 (0.006–0.15) 0.41 ± 0.29
L 0.69 ± 0.54 (0.17–1.67) 2.49 ± 1.21 (0.70–4.37) 16.6 ± 11.4

Females 6 M 0.48 ± 0.27 (0.15–0.97) 0.09 ± 0.06 (0.05–1.03) 0.55 ± 0.33
L 0.43 ± 0.24(0.20–1.11) 2.84 ± 1.21 (0.70–4.29) 16.6 ± 11.4

Males 16 M 0.68 ± 0.35 (0.19–1.47) 0.08 ± 0.05 (0.04–0.25) 0.36 ± 0.27
L 0.43 ± 0.24 (0.20–1.11) 2.36 ± 1.22 (0.77–4.37) 17.1 ± 11.4

Juveniles 10 M 0.42 ± 0.15 (0.15–0.65)* 0.09 ± 0.07 (0.005–0.25) 0.55 ± 0.37
L 0.63 ± 0.44 (0.18–1.67) 2.33 ± 1.17 (0.77–4.29) 13.6 ± 10.5

Adults 12 M 0.80 ± 0.36 (0.27–1.47)* 0.09 ± 0.04 (0.009–0.15) 0.30 ± 0.15
L 0.40 ± 0.24 (0.20–1.11) 2.61 ± 1.27 (0.70–4.37) 19.1 ± 12.0

Table 3   Results from the linear models adjusted for Hg and Se concentrations against total length (TL) and total weight (TW) by sex in muscle 
and liver tissue from Blue Sharks

* Statistically significant

Correlation R2/P-value

Model formula ([Hg] ~ TL)
 Muscle
  Males  +  0.247/0.05*
  Females  +  0.733/0.03*

 Liver
  Males  +  0.140/0.6
  Females − 0.753/0.02*

Model formula ([Hg] ~ TW)
 Muscle
  Males  +  0.388/0.002*
  Females  +  0.698/0.06

 Liver
  Males  +  0.191/0.6
  Females − 0.577/0.07

Correlation R2/ P-value

Model formula ([Se] ~ TL)
 Muscle
  Males  +  0.002/0.38
  Females  +  0.733/0.36

 Liver
  Males  +  0.331/0.02*
  Females − 0.598/0.07

Model formula ([Se] ~ TW)
 Muscle
  Males  +  0.005/0.79
  Females  +  0.282/0.27

 Liver
  Males  +  0.342/0.02*
  Females − 0.689/0.04*
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experimental conditions have pointed out that for the bind-
ing process of the selenoprotein P with one MeHg molecule 
occurs, 4 selenocysteines are needed. This reaction known 
as demethylation takes place in the animal liver to transform 
the MeHg into selenide (HgSe) particles. In the bull shark 
Carcharhinus leucas and the tiger shark Galeocerdo cuvier 
from a coastal ecosystem in the western Indian ocean, it 
was found that they may de-methylate methyl Hg as a path-
way for mitigating methyl Hg contamination (Le Croizier 
et al. 2020). Observing the molar ratio results from muscle 
samples (Table 2), we deduce that the amount of Se is not 
enough for the sequestration of the Hg to occur. However, 
these data alone are not sufficient to make a complete deter-
mination as to whether or not consumption of this meat is 
harmful. As Hg concentration is occasionally above regula-
tion, a more comprehensive approach including HBVSe will 
be addressed in depth. Overall, while Hg concentration in 
liver was similar to that in muscle, we could observe the 
opposite pattern for Se in all target categories (Table 2). For 
Se, TL and TW were significantly correlated (positive) with 
Se concentration in liver of males (Table 3). Contrastingly, 
Se concentration in liver of females was negatively corre-
lated with TW.

The higher concentrations of Se in the liver may be 
explained by the fact that the liver has the highest propensity 
for Se accumulation (Escobar-Sánchez et al. 2010; Lara et al. 
2020, 2022), mostly due to the presence of selenoproteins 
and their role in the Hg demethylation/detoxification process 
(Pantoja-Echevarría et al. 2021). We can remark that the 
higher Hg accumulation observed in the hepatic tissue of 
females can be related to the detoxification mechanism of 
maternal offloading (Adams and McMichael 1999; Cadena-
Cárdenas 2004). As this pollutant can potentially be trans-
ferred to the embryo, reproductive females may extend Hg 
retention in the liver so that toxicity through the placenta can 
be avoided in viviparous species (Frías-Espericueta et al. 
2015). Molar ratios of Se/Hg in the liver of blue sharks from 
Massachusetts (Hauser-Davies et al. 2021) and our study 
were above 4 (Table 4), which means that the detoxification 
process through demethylation may be occurring in blue 
sharks’ livers too.
Comparison of Hg and Se Concentration with other 
Studies

Globally, concerns about the toxicity of Hg in sharks for 
human consumption have sparked a considerable amount of 
research data on the subject. Although most of the data origi-
nated in Asia, because of the larger consumer market, we were 
able to select representative papers from the main blue shark 
fishing areas to compare with our results (Dell’apa et al. 2014) 
(Table 4). Since muscle is the most commonly studied as it is 
the most commonly consumed part of the animal, a compari-
son with liver tissue was not possible in the majority of cases. 

Allowing for this, the Hg concentrations in muscle found in 
our investigation were similar to those reported in the Medi-
terranean, and particularly low compared to those reported in 
Mexico, close to the study area. Notwithstanding the smaller 
amount of papers reporting Se concentration in muscle, we 
can again point out a similarity with the Mediterranean values 
reported for the coast of Italy (Storelli et al. 2022). Looking at 
a broader picture and taking into account the antagonism effect 
and the importance of this element for nutritional purposes, 
not only for sharks but also for consumers, we identified the 
lowest concentrations reported in the literature compared to 
those found in the muscle of blue sharks (Escobar-Sánchez 
et al. 2011; Barrera-García et al. 2013; Hauser-Davis et al. 
2021; Lara et al 2022). The recent work of Amezcua et al. 
(2022) set a reference baseline for Hg and Se in a comprehen-
sive evaluation of the work published to date for any shark spe-
cies in general, whereas in a global evaluation, they estimated 
a level of 0.90 ± 0.59 (µg g−1 ww) mean ± (SD) for Hg in blue 
shark muscle and 0.54 (0.44) in liver and found 0.25 (0.12) for 
Se in muscle and 1.77 (0.12) in liver. Comparing our results 
with this baseline, we can conclude that, although for mus-
cle the mean Hg concentration is lower, the maximum value 
observed was similar, while the liver results are very similar 
to the mean obtained by Amezcua et al. (2022). In contrast, Se 
was considerably lower in muscle and higher in liver.

Particularly striking about this similarity to the Hg and 
Se values found by Storelli et al. (2022) is that the atmos-
pheric deposition of Hg for our study area is lower than that 
reported for the Mediterranean (Table 4). So, in addition, 
the bioaccumulation observed in our results (Table 2) indi-
cates that MeHg availability to sharks is relatively high at 
the entrance to the Gulf of California. So we can attribute 
this phenomenon that methylation of inorganic Hg by bacte-
rial transformation is enhanced in low-oxygen waters (Blum 
2013; Le Croizier et al. 2019a, b). The study area is indeed 
located in the northern region of the Pacific ocean oxygen 
minimum zone (OMZ) off Mexico, already well documented 
(Sánchez-Pérez et al. 2021). This is one of the largest natu-
rally occurring shallow OMZ and is located in the Tropi-
cal Pacific off Mexico in the subsurface layer of the region, 
emerging up to 60 m depth near the shore (Fiedler and Tal-
ley 2006; Prince et al. 2006; Gilly et al. 2012). The OMZ 
is present in the Gulf of California, particularly, in the cen-
tral and southern portions, with concentrations < 5 mL/L at 
depths of 150 m, being undetectable (< 0.1 mL/L) at depths 
between 500 and 1100 m (Páez-Osuna et al. 2017). Recently, 
Álvarez-Rodríguez (2023) redefined the oxycline limit for 
the entrance of the Gulf of California in the water column 
with the OMZ intersects the points where the blue sharks 
for this study were captured (Fig. 1). In these areas with 
hypoxic and anoxic conditions, Hg methylation may occur 
and potentially be dispersed to the surrounding ecosystems 
(Fitzgerald et al. 2007).
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Selenium Health Benefit Value

Broadly speaking, in the last decade, most studies address-
ing the negative effects of Hg in seafood intended for human 
consumption acknowledge that Se:Hg is a more suitable 
tool for estimating the risks of Hg than Hg concentrations 
alone. These findings confirm that an excess of Se (Se: 
Hg > 1; HBVSe > 0) can protect the body against the danger 
of Hg. This approach for investigating the Se: Hg interac-
tion through HBVSe proposed and improved by Ralston et al. 
(2016) is a highly proficient human health assessment crite-
rion for determining risks from Hg and Se concentrations in 
marine fish (Kaneko and Ralston 2007). This index analyzes 
the molar ratio between the two elements and if it is negative 

Table 4   Concentration of Hg and Se (µg g−1 ww), HBVSe, and [Se]/[Hg] molar ratio (mean ± SD) in muscle and liver of blue sharks from Mex-
ico and other parts of the world. Approximated Hg atmospheric deposition for the region reported by Amezcua et al. (2022)

NA- not available

Hg Muscle/Liver Se Muscle/Liver Stage Molar ratio 
Muscle/Liver

HBVSe Mus-
cle/Liver

Atmospheric 
deposition of 
Hg (μg m−2 
y−1)

Region References

0.014 ± 0.09/ 
0.104 ± 0.03

NA Adults NA NA 10 South Pacific 
(Chile)

Lopez et al. 
(2013)

1.12 ± 0.57/NA NA 8 Atlantic Ocean 
(Brazil)

Carvalho et al 
(2010)

1.3 ± 0.22/0.96 ± 0.032 0.30 ± 0.084/3 ± 0.47 41.5 ± 31/NA NA 5 Atlantic Ocean 
(Azores-
Africa)

Branco et al 
(2007)

2.257 ± 0.71/NA 0.30 ± 0.05/NA 3.08 ± 1.08/
NA

33.58 ± 21.24 25 Northeast Atlan-
tic (Lisbon 
area, Portugal

Matos et al 
(2015)

0.42 ± 0.16/ 
0.12 ± 0.030

Adults NA  > 30 East China Sea 
(China)

Kazama et al 
(2020)

1.27 ± 0.53/0.27 ± 0.22 3.09 ± 2.54/1.26 ± 0.37 1.5/12 NA 30 North Atlantic 
(Massachu-
setts-USA)

Hauser-Davis 
et al (2021)

0.63 ± 0.01/NA 0.20 ± 0.04/NA  − 1.36  > 30 Mediterranean 
Sea (Italy)

Storelli et al 
(2022)

1.39 ± 1.58/NA 0.10 ± 0.05/NA Juveniles-
Adults

0.2/NA NA  < 5 NW Pacific 
(Baja Califor-
nia-Mexico)

Escobar-
Sanchez 
et al. (2011)

1.96 ± 1.48/NA NA Adults NA NA 5 Gulf of Cali-
fornia (Baja 
California-
Mexico)

Maz-Corrau 
et al (2012)

1.03 ± 0.08/ 0.22 ± 0.35 0.22 ± 0.02/ 1.67 ± 0.58 Juveniles-
Adults

NA NA 5 SW Pacific (Baja 
California-
Mexico)

Barrera-García 
et al (2013)

0.44 ± 0.35/0.02 ± 0.02 0.51 ± 0.43/1.54 ± 1.14 Juveniles NA NA 5 Bahía Tortu-
gas (Baja 
California 
sur-Mexico)

[66]

0.63 ± .0.34/0.50 ± 0.37 0.08 ± 0.06/2.49 ± 1.21 Juveniles-
Adults

0.41/16.59 -51.18/35.05 10 Entrance Gulf 
of California 
(Sinaloa)

Present study

Table 5   An improved criterion for selenium health benefit value 
(HBVSe) means and standard deviation, for muscle and liver of P. 
glauca, separated into five categories

* Significantly different

Categories HBVSeMuscle HBVSeLiver

General −13.29 ± 14.6 31.18 ± 15.44
Females −6.29 ± 8.84 35.5 ± 15.34
Males −15.92 ± 15.67 29.55 ± 15.66
Adults −19.27 ± 16.33* 32.96 ± 16.2
Juveniles −6.13 ± 8.19* 29.05 ± 15.05
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it will indicate a potential risk whereas if it is positive, it will 
show significant benefits from the consumption of that par-
ticular seafood product (Ralston et al. 2016). In the case of 
muscle, we obtained all negative values (Table 5), indicating 
that the risk of ingesting this meat is greater than the benefit, 
while liver shows high and positive values. Consistent with 
other studies, our results indicate that blue sharks, due to 
various conditions such as size/age, diet and feeding areas 
(pollutant exposure), show negative values of this index, 
suggesting that sequestration or inhibition of Hg by Se might 
be less likely in muscle (Storelli et al. 2022), which is similar 
to Mediterranean blue shark muscle (Table 5). Matos et al. 
(2015) in the Northeast Atlantic (Portugal), also reported 
high negative values of this index for P. glauca, concluded 
after risk/benefit assessment, a recommended consumption 
of a maximum of one meal per year of raw or cooked blue 
shark meat. Considering the above scenario, ingestion of 
blue shark meat could have the potential to produce harm-
ful Hg effects in the consumer (Cuvin-Aralar and Furness 
1991). As HBVSe varies by sex and life stage for muscle, 
the index shows the same pattern as Hg concentration, with 
no differences between sexes (W = 68; p = 0.1545), and sig-
nificantly different according to stages, with adults being 
more harmful for consumption than juveniles (W = 21; 
p = 0.008957).

While shark meat is mainly consumed directly in differ-
ent forms in a large number of countries (Cardeñosa 2019), 
shark liver is mainly processed as oil, for its high medicinal 
value in the treatment of several diseases such as cancer 
(Hajimoradi et al. 2009). Liver oil medicinal properties stem 
from its high levels of fatty acids and fat-soluble vitamins 
(Santos et al. 2020). Although HBVSe in liver tissue did not 
show significant differences between any of the categories 
(sex and stage) (W = 55, p = 0.6407; W = 72, p = 0.4562), 
and its positive values, it is worth noting that this part of 
the shark might not pose a risk to the consumption of shark 
meat (W = 72, p = 0.4562). HBVSe and the molar ratio did 
not present a significant result with TL except for the HBVSe 
in the liver, while in the females the index decreased with 
size, indicating that a bigger risk of consumption in males 
is the opposite (Fig. 2b). With respect to the weight of the 
individuals, there were negative significant correlations with 
HBVSe and Se/Hg in the muscle of males (Fig. 2e, g), i.e., 
edible muscle of heavier specimens may be hazardous for 
consumers.

Conclusions

The results of this study confirm the hypothesis that bioac-
cumulation of Hg and Se occurs in blue sharks, with higher 
Hg concentrations in the muscle of adult sharks than in 
juveniles. While Hg concentrations were comparable in the 
muscle and liver of sharks (overall, by sex and maturity). 
Se was always higher in liver than in muscle. Finally, the 
HBVSe was negative in both juveniles and adults and females 
and males, indicating a potential risk from the consumption 
of this meat. The shark fleet of the Mexican Pacific is the 
principal supplier of blue shark meat in different forms to 
the domestic consumer market, so we can recommend that 
blue shark meat caught along the entrance to the Gulf of 
California be eaten with caution. Although the liver can be 
a valuable resource according to the results of this and other 
studies, its benefits appear to outweigh the risks for those 
who consume it. This study confirms previous findings on 
this shark species and serves as a basis for recommending a 
moderate to low consumption of its meat.
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