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Abstract

Round rays (family: Urotrygonidae) are commonly caught as by-catch by shrimp trawl

fisheries in the tropical eastern Pacific (TEP). However, little information on their life

history and catch species composition exists for most round ray species, preventing

the evaluation of the impact of fishing on their populations. The mean size at sexual

maturity (DW50), seasonal variation by maturity stages, and fecundity for two round

ray species caught during shrimp trawl research cruises in the south-eastern Gulf of

California (northern TEP) were estimated using a multi-model approach and inference

for the first time, to determine the part of the population of each species that is being

affected by shrimp trawling. Disc width (DW) ranged from 7.0 to 30.9 cm for the

spotted round ray (Urobatis maculatus), and 7.2–33.5 cm for the thorny stingray

(Urotrygon rogersi), with females reaching larger sizes than males in both species. The

DW50 was estimated at 12.8 and 11.8 cm DW for the males and females of

U. maculatus, respectively, whereas for U.rogersi, it was 15.0 and 18.4 cm DW for

males and females, respectively. Embryos were found in females ≥14.5 cm DW in

both species. The maximum fecundity was five embryos for U. maculatus (mean =

3.1 ± 0.2 S.E., mode = 4), and six embryos for U. rogersi (mean = 3.0 ± 0.3 S.E.,

mode = 2). Fecundity and embryo size did not vary with maternal size. Male and

female immature and mature individuals for both species, including pregnant females,

were found in the catches in all seasons of the year. Our results can help determine

the vulnerability of the studied species populations to fishing pressure from shrimp

trawling in the northern TEP and guide the development of future monitoring strate-

gies and conservation actions for these species, if necessary.
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1 | INTRODUCTION

Elasmobranchs are principally threatened by overexploitation through

targeted fisheries and incidental catches (by-catch) (Cronin et al., 2022;

Dulvy et al., 2021; Pacoureau et al., 2021). For example, in the Gulf of

Mexico, shrimp trawl fisheries are responsible for the decline in the

abundance of small coastal elasmobranchs (Shepherd & Myers, 2005),

whereas in the tropical eastern Pacific (TEP) this fishery commonly

catches round rays of the family Urotrygonidae as by-catch (Morales-

Saldaña et al., 2022). Specifically, in the northern TEP, which corre-

sponds to the Gulf of California (GC) and the North Pacific coast of

Mexico, the shrimp trawl fisheries represent a considerable source of

additional fishing mortality for rays caught as by-catch (Bizzarro

et al., 2007, 2009; Morales-Azpeitia et al., 2013), which include a high

proportion of juvenile and adult round rays of the genus Urobatis

spp. and Urotrygon spp. (Alvarez-Fuentes et al., 2023; Garcés-García

et al., 2020; L�opez-Martínez et al., 2010; Nava-Nava, 2013; Rábago-

Quiroz et al., 2012). However, the real impact of shrimp trawling fishery

on the abundance of round rays remains unknown in this area (Garcés-

García et al., 2020). The shrimp fishery is the most important industry

in Mexico in terms of income and employment and represents nearly

40% of the total national fish production value (Arreguín-Sánchez

et al., 2017; Lluch-Cota et al., 2007), which means that the effect of the

shrimp trawl fishery on the abundance of these taxa might be high.

The spotted round ray Urobatis maculatus Garman 1913 and the

thorny stingray Urotrygon rogersi are species with no commercial value

in Mexico but are commonly caught as by-catch by the shrimp trawl

fisheries (Garcés-García et al., 2020; Herrera-Valdivia et al., 2016;

L�opez-Martínez et al., 2010; Rábago-Quiroz et al., 2012). According to

the IUCN's Red List, U. maculatus is classified as a “Least Concern”
species due to its small size, reaching sexual maturity at a smaller

length and early age, and being relatively productive (Pollom

et al., 2020). In contrast, U. rogersi is classified as “Near Threatened”
by the IUCN Red List, because this species is subject to intense and

largely unmanaged fishing pressure throughout its range. According to

the IUCN, a population reduction of 20%–29% has occurred over the

past three generations (15 years) (Kyne et al., 2020; Morales-Saldaña

et al., 2022). However, information on abundance and the life history

(e.g., age and size at maturity, number, and size of offspring, growth

patterns) of both species is scarce or nonexistent in the GC and the

north Pacific coast of Mexico, and therefore the real impact of

the shrimp trawl fisheries on their populations is unknown.

Biological information and species-specific data collection are

important to improve assessments of commercially exploited or

by-catch species and propose conservation, management, and moni-

toring strategies (Clarke et al., 2018; Oliver et al., 2015; White

et al., 2019), which have been recommended to prevent declines and

extinctions of the TEP round ray populations (Morales-Saldaña

et al., 2022). Particularly, size at sexual maturity and fecundity are key

reproductive parameters, essential for the assessment and management

of exploited populations, allowing the estimation of the vulnerability

of the elasmobranch populations to fishing pressure by incorporating it

into ecological risk or demographic assessment analyses (Barnett

et al., 2013; Cortés et al., 2010; Santana et al., 2020), which is also use-

ful for assessing the health of their populations and making inferences

and predictions of their populations (Morales-Saldaña et al., 2022). In

addition, these reproductive parameters could be used to establish a

minimum catch size for exploited species (Arag�on-Noriega, 2015;

Caddy & Mahon, 1995; Mendivil-Mendoza et al., 2018), mainly if these

are low fecundity species (Croll et al., 2016; Marshall et al., 2023;

NOM-029-PESC-2006, DOF, 2007; Salom�on-Aguilar, 2015), or other

management measures.

Fishery-independent surveys can provide important information

on the abundance and life-history parameters of elasmobranchs

(Rago, 2005; Runcie et al., 2016; Talwar et al., 2020), being useful

when little data are available from commercial fisheries (Dennis

et al., 2015; Kacev et al., 2017). Furthermore, fishery-independent

surveys in several parts of the world have shown that elasmobranchs

such as dogfishes (Squaliformes), angel sharks (Squatiniformes), and

rays (batoids), caught as by-catch by demersal trawls, have suffered

marked declines in abundance (Walker, 2005a). Using data from

fishery-independent shrimp trawl surveys, we assessed the size at

sexual maturity and the seasonal variation by maturity stages of

U. maculatus and U. rogersi to determine which parts of the population

are being caught as by-catch by shrimp trawling operating in the stud-

ied area. We also estimate the fecundity and determine if a relation-

ship between maternal size and the number and size of the embryos

exists. The working hypothesis is that by-catch from shrimp trawling

affects individuals at different stages of maturity for both species in

the studied area. The information obtained in the present study inte-

grated into ecological risk or demographic assessment analyses will be

useful to determine the vulnerability of the studied species popula-

tions to fishing pressure from shrimp trawling and propose conserva-

tion actions, if necessary.

2 | MATERIALS AND METHODS

2.1 | Ethics statement

The Mexican Institute for Research in Sustainable Fisheries and Aquacul-

ture (IMIPAS) conducted fishery-independent shrimp trawl surveys under

three permits issued by the corresponding Mexican authorities (National

Commission for Fisheries and Aquaculture of Mexico, CONAPESCA,

https://www.gob.mx/conapesca): PPF/DGOPA-238/13, PPF/DGOPA-

052/14, and PPF/DGOPA-002/18. These surveys aim to evaluate the

shrimp populations and species caught as by-catch. The majority of col-

lected individuals were dead on deck, whereas individuals still alive were

killed immediately by destruction of the brain and severance of the spinal

cord using a knife (Holmes et al., 2022; O'Shea et al., 2013).

2.2 | Study area and data collection

All the analysed round rays were caught during 1117 tows carried out

from February 2012 to January 2020, on board the R.V. INAPESCA I
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and R.V. BIP XII. The dates when the cruises occurred varied each year,

but samples from all seasons and months were obtained during the stud-

ied period, so the individuals for each month and season were obtained

from the sum of those particular periods. The trawls were carried out on

the southeastern coast of the GC and Mexican Pacific, in the fishing area

where commercial shrimp vessels operate (NOM-002-SAG/PESC-

2013-DOF, 2013). In such areas, INAPESCA carries out studies of shrimp

populations (Liedo-Galindo & González-Ania, 2005) (Figure 1). The typi-

cal double nets (33 m in length, mesh-size of 51 mm in the square, belly,

and wings, and 38 mm in the cod end) used in the industrial demersal

shrimp trawl fishery were employed to undertake the trawls, at depths

of 9–64 m with a towing speed of 2 knots for 1 h. The surveys were car-

ried out throughout the year, including the closed fishing period for

shrimp fishery (early April to early September), when shrimp trawling is

prohibited to commercial vessels, but is allowed to government research

vessels (NOM-002-SAG/PESC-2013-DOF, 2013), and information from

commercial catches is not available.

Round rays from all observed cohorts were collected randomly

(without prioritizing the collection of any particular cohort) in each

tow once the nets were discharged over the deck, and frozen on

board. At the laboratory, all individuals were identified to the species

level using various taxonomic keys (e.g., Castro-Aguirre & Espinosa-

Pérez, 1996; Corro-Espinosa & Ramos-Carrillo, 2004; McEachran &

Notarbartolo-Di Sciara, 1995; Robertson & Allen, 2015). The unique

traits of both species were identified based on morphology, and a

follow-up study in the south-eastern Gulf of California utilized molec-

ular techniques (genomic DNA) (Alvarado-Marín, 2023) to confirm the

accuracy of the identification of the individuals analysed for this

study. All individuals were sexed by identifying the presence or

absence of claspers (Carrier et al., 2004), and the disc width (DW) was

measured to the nearest centimeter at the widest part of the disc.

2.3 | Size at sexual maturity (DW50)

The maturity stage was assigned to each individual based on the mac-

roscopic inspection of the reproductive structures: primarily ovary

development confirmed by the uterus and oviducal gland condition

for the females; and clasper rigidity stage confirmed by testis develop-

ment for males (Garcés-García et al., 2020; Walker, 2005b) (Table 1).

The size at sexual maturity (disc width at which 50% of the individuals

in the population are sexually mature, DW50) was estimated for each

sex from the proportion of immature and mature individuals at

each class interval, using the Gompertz model (asymmetric and

non-logistic curve) and the Brouwer and Griffiths model (symmetric

logistic curve), avoiding the use of redundant models (Burnham &

Anderson, 2002; García-Rodríguez et al., 2020; Katsanevakis, 2006).

Class intervals (bandwidth) were determined using the Sheather-Jones

selection procedure (Muro-Torres et al., 2023; Sheather & Jones,

1991) in RStudio 2022.12.0 + 353.

Model 1 (Gompertz, 1825)

Pi ¼ Exp�Exp
�θ DWi�bDW50

� �

Model 2 (Brouwer & Griffiths, 2005)

Pi ¼ 1

1þExp
� DWi�cDW50

� �
=α

where Pi is the proportion of mature individuals in size class i, θ is

the rate at which sexual maturity is attained, DWi is the disc width

within each size class i, dDW50 is the disc width at which 50% of the

F IGURE 1 Fishing area in the
continental shelf of the south-
eastern Gulf of California
(northern tropical eastern Pacific),
established for shrimp trawl
research cruises undertaken by
the National Fisheries and
Aquaculture Institute of Mexico
(INAPESCA), Mexico. SBC, South

Baja California.
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individuals in the population are sexually mature, and α is the width of

the maturity ogive.

Each model was adjusted by minimizing the objective likelihood

function with the direct search algorithm of Newton (Kutner

et al., 2004), according to the following equation that assumes a bino-

mial distribution (Jacob-Cervantes & Aguirre-Villaseñor, 2014):

�LnL¼�
Xn
i¼1

mi �Ln Pi
1�Pi

� �
þni �Ln 1�Pið ÞþLn

ni
mi

� �� 	

Binomial coefficient :
ni
mi

� �
¼ ni!

ni�mið Þ!�mi!ð Þ

where Pi is the proportion of mature individuals in size class i, ni is the

total number of individuals within each size class i, and mi is the num-

ber of sexually mature individuals in each size class i.

The 95% confidence intervals (CI95%) of the DW50 were estimated

with 3000 bootstrap replicates using the percentile confidence inter-

vals method (Haddon, 2011). The models were compared using a

multi-model approach with the corrected AICc, the difference of

Akaike (Δi), and the weight of Akaike (wi) (Akaike, 1973; Burnham &

Anderson, 2002; Hurvich & Tsai, 1989).

In case Akaike's weight displayed no “clear winner” (%wi > 90%;

Katsanevakis, 2006; Katsanevakis & Maravelias, 2008) the DW50 of

the average model was estimated using a multi-model inference

(Burnham & Anderson, 2002; Katsanevakis & Maravelias, 2008;

Luquin-Covarrubias et al., 2016).

2.4 | Variation by maturity stages

The frequency by maturity stages for both sexes was determined

monthly (sum of individuals caught for each particular month during

2012–2020) and seasonally (sum of individuals caught for each group

of months in each particular season during 2012–2020). The seasons

were divided as follows: dry cool season (DCS, from December 1 to

March 31), dry warm season (DWS, from April 1 to June 30), and

humid warm season (HWS, from July 1 to November 30) (Alvarez-

Fuentes et al., 2023).

TABLE 1 Maturity stages assigned based on the development of reproductive structures (adapted from Garcés-García et al., 2020;
Walker, 2005b).

Maturity

stages
Females Males

Ovary Oviducal gland Uterus Testis Clasper

Immature Not differentiated from the

epigonal organ, without

visible oocytes

Indistinct from the

oviduct.

Indistinct from the oviduct. Not differentiated from the

epigonal organ.

Pliable, short

with no

calcification.

Maturing Differentiated from the

epigonal organ, with

whitish oocytes of

diameter <3 mm.

Differentiated from

the oviduct, larger

than wider.

Uniformly enlarged tubular

structure.

Differentiated from the

epigonal organ, not lobed

or vascularized

Enlarged,

partly

calcified.

Mature Differentiated from the

epigonal organ, with

yellowish oocytes of

diameter ≥3 mm.

Heart shape well

differentiated from

the oviduct.

Enlarged tubular structure

distended, with or

without the presence of

eggs or embryos.

Enlarged, lobed, and

vascularized

Enlarged, rigid,

and fully

calcified.

F IGURE 2 Size-frequency distribution by stage of sexual maturity

for (a) Urobatis maculatus (n: sample size = 267, class interval or
bandwidth = 1.38 cm) and (b) Urotrygon rogersi (n = 422, class
interval or bandwidth = 1.26 cm) from shrimp trawl by-catch in the
south-eastern Gulf of California, Mexico. F_Immature, immature
females; F_Mature, mature females; F_Pregnant, pregnant females;
M_Immature, immature males; M_Mature, mature males.
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2.5 | Embryos and the effect of maternal size on
litter size and size of embryos

Embryos were counted, sexed, and measured. The sex ratio of

embryos was tested for a significant difference from the expected 1:1

using the χ2 test modified by Yates (Yates, 1934; Zar, 2010). To deter-

mine whether there was an effect of maternal size on fecundity (litter

size) and size of embryos both were plotted against female DW, and

the relationships were examined using linear regression analysis

(Mejía-Falla et al., 2012).

3 | RESULTS

3.1 | Size at sexual maturity (DW50)

A total of 267 individuals of U. maculatus (139 males, 128 females), and

422 of U. rogersi (272 males, 150 females) were analysed. U. maculatus

ranged in size from 7.0 to 30.9 cm DW. Females ranged in size from 7.4

to 30.9 cm DW, whereas males ranged in size from 7.0 to 25.8 cm DW.

For U. maculatus' males, 58 (41.7%) were immature with sizes of 7.0–

21.5 cm DW, whereas 81 (58.3%) were mature with sizes of 8.9–

25.8 cm DW (Figure 2a). Regarding the females, 44 (34.4%) were imma-

ture with sizes of 7.4–23 cm DW, and 84 (65.6%) were mature with

sizes of 11.4–30.9 cm DW; of the latter 25 were pregnant females

(14.5–30.9 cm DW) (Figure 2a). The two models compared appear to fit

the data of males and females of U. maculatus well (Δi ≤ 2, Table 2;

Figure 3a,b). Therefore, the size at sexual maturity (DW50) of the aver-

age model was estimated for both sexes, with the DW50 of females

being smaller than that of males (Table 2, Figure 3a,b).

U. rogersi ranged in size from 7.2 to 33.5 cm DW. Females ranged

in size from 8.5 to 33.5 cm DW, whereas males in size ranged from

7.2 to 29.5 cm DW. Out of the 272 U. rogersi's males, 123 (45.2%)

were immature with sizes of 7.2–27.5 cm DW, whereas 149 (54.8%)

were mature with sizes of 9.7–29.5 cm DW (Figure 2b). Regarding the

females, 38 (25.3%) were immature with sizes of 8.5–25.8 cm DW,

and 112 (74.7%) were mature with sizes of 14.7–33.5 cm DW; of the

latter 42 were pregnant females (14.7–33.5 cm DW) (Figure 2b).

U. rogersi's males adjusted better with the Gompertz model for the

data according to the AICc and Akaike's difference (Δi ≤ 2); thus it was

not necessary to estimate the average model (Table 2; Figure 3c). In

contrast, the DW50 of the average model was estimated for females

because both models fit the data (Δi ≤ 2, Table 2), with a DW50 of

females larger than that of males (Table 2; Figure 3c,d).

TABLE 2 The size at sexual maturity (DW50) estimated for males and females of Urobatis maculatus and Urotrygon rogersi in the south-eastern
Gulf of California (Mexico) using two sigmoidal models.

Species Model Parameter Males CI95% Females CI95%

Urobatis maculatus Gompertz DW50 12.3 11.0–13.4 11.1 8.0–13.0

Θ 0.32 0.22–0.49 0.21 0.12–0.34

AICc 50.4 34.5

Δi 0 0

%wi 67.6 51.0

Brouwer and Griffiths DW50 13.8 12.6–14.7 12.5 9.6–14.3

α 2.31 1.39–3.80 4.43 3.06–6.84

AICc 51.9 34.6

Δi 1.5 0.08

%wi 32.4 49.0

MMI DW50 12.8 11.5–13.8 11.8 8.8–13.6

Urotrygon rogersi Gompertz DW50 15.0 13.8–16.2 17.7 13.8–21.4

Θ 0.21 0.17–0.27 0.33 0.27–0.57

AICc 62.5 29.6

Δi 0 0

%wi 99.3 50.5

Brouwer and Griffiths DW50 17.8 16.7–18.7 19.1 15.7–20.9

α 2.97 2.31–3.81 2.48 0.92–4.28

AICc 72.4 29.5

Δi 9.9 0.04

%wi 0.7 49.5

MMI DW50 - 18.4 14.7–21.1

Abbreviations: θ and α, parameters of the models; Δi, Akaike's difference; %wi, percentage weight of Akaike; AICc, corrected Akaike Information Criterion;

CI95%, confidence intervals; DW50, the size at sexual maturity of the average model; MMI, multi-model inference.
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3.2 | Variation by maturity stages

The highest numbers of immature individuals for males of U. maculatus

were captured in January (DCS), August, and September (HWS). In con-

trast, immature individuals of females were more frequent during

January (DCS), June (DWS), and September (HWS) (Table 3; Figure 4a,b).

Mature males of U. maculatus were frequently observed during January

and February (DCS), whereas mature females were more abundant dur-

ing February to March (DCS), and September (HWS) (Table 3;

Figure 4a,b). Pregnant females were observed in the catches during

March (DCS), August, and September (HWS), with a higher abundance in

September (Table 3). The largest numbers of immature individuals for

both sexes of U. rogersi were caught during August and September

(HWS) (Table 3; Figure 4c,d). Mature males of U. rogersi were frequent

during July August, and September (HWS), whereas mature females

were more abundant during January (DCS), June (DWS), and August

(HWS) (Table 3; Figure 4c,d). Pregnant females were observed in the

catches during most of the year and in all seasons, except for March and

October, being more abundant during August (Table 3, HWS).

3.3 | Embryos and the effect of maternal size on
litter size and size of embryos

A total of 66 intra-uterine embryos (37 males, 25 females, and 4

undetermined) of U. maculatus were found, with sizes from 2.3 to

11.1 cm DW (mean ± S.E., 7.3 ± 0.6 cm DW). Fecundity varied

between one and five embryos (mean ± S.E., 3.1 ± 0.2, mode = 4).

The sex ratio of the embryos (0.66F:1M) did not differ from the 1:1

ratio (χ2 = 1.952, df = 1, p = 0.162). Maternal DW did not show any

relationship with litter size (R = 0.029, R2 = 0.0008, F1,19 = 0.016,

p = 0.901) or with embryo DW (R = 0.377, R2 = 0.142, F1,17 = 2.809,

p = 0.112) (Figure 5a,b).

A total of 140 intra-uterine embryos (62 males, 64 females, and

14 undetermined) of U. rogersi were found, with sizes from 3.0 to

11.0 cm DW (mean ± S.E., 6.3 ± 0.3 cm DW). Fecundity varied

between one and six embryos (mean ± S.E., 3.0 ± 0.3, mode = 2). The

sex ratio of the embryos (1.03F:1M) did not differ from the 1:1 ratio

(χ2 = 0.008, df = 1, p = 0.929). Maternal DW did not show any

relationship with litter size (R = 0.158, R2 = 0.025, F1,35 = 0.901,

p = 0.349) or with embryo DW (R = 0.128, R2 = 0.016, F1,57 = 0.945,

p = 0.335) (Figure 5c,d).

4 | DISCUSSION

Both U. maculatus and U. rogersi are important components of the demer-

sal ecosystem in the northern TEP, as they occupy intermediate positions

within the food webs like other rays, thus linking the primary producers

to the top levels of the food chain (Cortés et al., 2008). However, very

little is known about their life history, especially in the studied area (Last

et al., 2016), which limits the assessment of their population trends.

F IGURE 3 Maturity curves of
(a) males and (b) females of
Urobatis maculatus, and (c) males
and (d) females of Urotrygon
rogersi in the southeastern Gulf of
California, Mexico, estimated
with two sigmoidal models.
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Fishery-independent shrimp trawl surveys carried out during the

closed fishing period for shrimp (March to September) and elasmo-

branch fisheries (May to July) provided higher availability of data to

estimate the reproductive parameters of the analysed round rays.

Accurate estimates of abundance and life-history parameters of elas-

mobranchs are important to propose and implement appropriate man-

agement, monitoring, and conservation strategies (Clarke et al., 2018;

Harry, 2018; Oliver et al., 2015; White et al., 2019).

In both species, females had a larger maximum DW than males, sug-

gesting size sexual dimorphism (Ebert et al., 2008a, 2008b). Similar

observations have been made for similar species in the Gulf of California

(U. rogersi) (Ehemann et al., 2022), in the Gulf of Tehuantepec (southern

Pacific coast of Mexico) (Medina-Bautista, 2011), and in the Colombian

Pacific (Mejía-Falla et al., 2012; Mejía-Mercado, 2007). Similar informa-

tion is not available for U. maculatus from the few previous studies avail-

able (De La Cruz-Agüero et al., 2018; González-González et al., 2020;

Ontiveros-Granillo, 2009), where the maximum and minimum sizes

of this species in catches are reported without differentiating

by sex. However, size sexual dimorphism is common in elasmo-

branchs (Cortés, 2000; Da Silva et al., 2018; Kyne et al., 2016;

Walker, 2005b).

Information on the DW50 for U. maculatus is presented here for

the first time, with the estimated DW50 for females being smaller than

that of males. In contrast, the DW50 of the females of U. rogersi was

larger than that of males, which coincides with reports from Mejía-

Falla et al. (2012). This pattern in many species of elasmobranchs may

be in part explained by the need for females to attain a larger size to

support pups (Cortés, 2000, 2004; Leung et al., 2023). However, this

pattern was not evidenced in U. maculatus, probably due to the small

size of this species (Pollom et al., 2020), which has also been sug-

gested for some species of rays like the zipper sand skate Psammoba-

tis extenta (Garman 1913) and the Venezuela round stingray Urotrygon

F IGURE 4 Seasonal variation (sum of individuals caught for each particular month during 2012–2020) by maturity stages of (a, n = 112)
males and (b, n= 94) females of Urobatis maculatus, and (c, n = 263) males and (d, n = 120) females of Urotrygon rogersi in the southeastern Gulf
of California, Mexico.
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venezuelae Schultz 1949 (Acevedo et al., 2015; Braccini &

Chiaramonte, 2002).

U. maculatus was also found to mature at a smaller size and present

a lower DW50-maximum observed DW ratio in comparison to other

round rays (Table 4), suggesting an earlier maturation, which could

allow it to be productive enough to withstand fishing pressure com-

pared to other species (Pollom et al., 2020; Walker & Heessen, 1996).

Larger-bodied and late maturing ray species are more susceptible to

overfishing than smaller-bodied, early-maturing ones (Dulvy &

Reynolds, 2002; Sguotti et al., 2016; Walker & Hislop, 1998).

In comparison with other studies, both females and males of

U. rogersi in the present study (fishery-independent shrimp trawl

surveys) from the northern TEP matured at larger DW than those from

the Colombian Pacific (Mejía-Falla et al., 2012) (Table 4). The likely

reason for this observation was that in that study the individuals of

U. rogersi come from artisanal shrimp trawls in shallow waters (≤10 m

depth), whereas in the present study, the individuals of this specie

were caught at depths of 9–64 m; thus such differences may result

in different cohorts of these populations being caught (e.g.,

Bustamante & Bennett, 2013; Nakano & Seki, 2003). However, other

factors could have also influenced these observed differences in the

DW50 between regions, for example, the sample size (Bellodi

et al., 2016; Da Silva et al., 2018), the structure of the data concerning

the proportion of mature individuals in each size class (Chen &

Paloheimo, 1994; Molina & Cazorla, 2015; Trippel & Harvey, 1991),

the criteria for assigning maturity, mainly when performing macro-

scopic observation of reproductive structures (Martin & Cailliet, 1988;

Oviedo-Pérez et al., 2014; Tagliafico et al., 2016) or selectivity of the

fishing gear (Estalles et al., 2017; Martins et al., 2018; Tagliafico

et al., 2012). The differences could also be related to the existence

of subpopulations with different natural variability in maturity

(Alkusairy & Saad, 2017; Araújo et al., 2016; Da Silva et al., 2018;

Snelson Jr. et al., 2008), caused by different oceanographic and envi-

ronmental conditions (Girard & Du Buit, 1999; Saadaoui et al., 2015;

Yamaguchi et al., 2000), or even fishing pressure (Aranha et al., 2009;

Fahmi et al., 2009; Serra-Pereira et al., 2015).

The use of a multi-model approach and inference assures that the

observed results are more reliable than those obtained in previous

studies (Alvarez-Fuentes et al., 2023; García-Rodríguez et al., 2020;

Katsanevakis, 2014). In some species of elasmobranchs, such as Atlan-

tic sharpnose shark Rhizoprionodon terraenovae (Richardson, 1836),

bat eagle ray Myliobatis californica Gill 1865, giant electric ray Narcine

entemedor Jordan & Starks, 1895, and blotched stingray Urotrygon

chilensis (Günther, 1872), the multi-model approach and inference

have also been used to estimate size at sexual maturity (Alvarez-

Fuentes et al., 2023; García-Rodríguez et al., 2020; Oviedo-Pérez

et al., 2014; Pérez-Palafox et al., 2022).

U. maculatus and U. rogersi mainly showed a higher frequency of

mature females and pregnant females during the DCS or the HWS.

The same pattern has been reported for other round rays such as

Haller's round ray Urobatis halleri (Cooper, 1863), dwarf stingray

Urotrygon nana Miyake & McEachran 1988, and U. chilensis in the Gulf

of California (Alvarez-Fuentes et al., 2023; Morales-Azpeitia et al.,

2011; Nava-Nava, 2013; Rubio-Lozano, 2009; Serrano-Acevedo, 2007).

F IGURE 5 (a) Relationship of
maternal disc width (maternal
DW) with litter size (number of
embryos) for Urobatis maculatus
(n = 21). (b) Relationship of
maternal DW with embryo's disc
width (embryo DW) for Urobatis
maculatus (n = 19).
(c) Relationship of maternal DW

with litter size for Urotrygon
rogersi (n = 37). (d) Relationship
of maternal DW with embryo
DW for Urotrygon rogersi (n= 59).
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However, to determine the reproductive cycle of analysed species,

other analyses are also necessary (e.g., monthly and seasonal variations

in the gonadosomatic and hepatosomatic indices, ovulation time,

embryonic growth, and parturition dates) (Alvarez-Fuentes et al., 2023;

Mejía-Falla et al., 2012), which will be analysed in other studies.

An annual reproductive cycle has been reported for Urobatis hal-

leri in California (Babel, 1967; Mull et al., 2010), whereas a biannual

reproductive cycle, with ovulation coinciding with parturition, has

been described for the yellow stingray Urobatis jamaicensis (Cuvier,

1816) in south-east Florida (Schieber et al., 2023). Furthermore, a

triannual reproductive cycle, with overlapping ovarian and uterine

cycles, has been reported for U. rogersi in Colombia (Mejía-Falla

et al., 2012), whereas two reproductive periods (a major one during

the HWS and the other one during the DCS) has been proposed for

U. chilensis in the south-eastern Gulf of California (Alvarez-Fuentes

et al., 2023), showing the diversity of strategies in these species.

The abundance and distribution patterns of elasmobranchs can

be affected by interannual changes in water temperature associated

with climatic anomalies such as El Niño Southern Oscillation (ENSO)

and its variations between warm (El Niño) and cold (La Niña) condi-

tions (Arnés-Urgellés et al., 2021; Osgood et al., 2021; Ruiz-Barreiro

et al., 2019). Further studies are necessary to analyse the impact of

these climatic anomalies on the distribution of analysed round rays by

maturity stages in the Gulf of California.

In several round rays such as U. halleri, U. jamaicensis, the

small-eyed round stingray Urotrygon microphthalmum Delsman

194, U. chilensis, and even U. rogersi the female size seems to be

related to the litter size or the size of the pups (Babel, 1967; Fahy

et al., 2007; Mejía-Falla et al., 2012; Rubio-Lozano, 2009; Santander-

Neto et al., 2016; Serrano-Acevedo, 2007). However, these relation-

ships were not found for U. rogersi and U. maculatus in the present

study. Aborted embryos of both species were observed in the catches,

which could have affected the relationship between the variables

analysed.

Both analysed species showed low fecundities, probably related

to the aborted embryos observed of both species in the catches

(e.g., Mejía-Falla et al., 2012). However, these fecundities were consis-

tent with the range reported for several species of the family Urotry-

gonidae (one to six embryos) (Acevedo et al., 2015; Alvarez-Fuentes

et al., 2023; Babel, 1967; Ehemann et al., 2022; Last et al., 2016). The

maximum observed fecundity for U. rogersi in the present study was

higher than that reported by Mejía-Falla et al. (2012) in Colombia

(three embryos). Mejía-Falla et al. (2012) considered 113 embryos

aborted, which could have underestimated their fecundity estimates.

TABLE 4 Size at sexual maturity of several species of round rays (Urotrygonidae).

Species
DWfm (cm) DW50% (cm) DWmobs (cm)

DW50%-DWmobs

ratio (%)
Sampling zone References

Females Males Females Males Females Males Females Males

Urobatis halleri 14.5 14.5 15 15 31 25 48.4 60 Ventura and San Diego, California Babel (1967)

U. halleri 17 13 17.9 17.03 26 22 68.8 77.4 Guaymas, Sonora, northern GC Serrano-

Acevedo

(2007)

Urobatis

maculatus

11.4 8.9 11.8 12.8 30.9 25.8 38.1 49.6 South-eastern GC, Mexico The present

study

Urobatis

jamaicensis

- - 15 15.4 24.1 21.6 62.2 71.3 South-east Florida Schieber et al.

(2023)

Urotrygon

chilensis

11.8 13 14.6 15.2 25.5 21.5 57.3 70.7 Teacapán, southeast of the GC Rubio-Lozano

(2009)

U. chilensis 16.5 16 - - 25.2 28.5 - - San Felipe, Puerto Peñasco,

Matanchen Bay, northern and

southern GC

De la Rosa-

Meza (2010)

Urotrygon

rogersi

10.5 10.5 12.3 11.8 19.9 17 61.8 69.4 Central-south Pacific coast of

Colombia

Mejía-Falla

et al. (2012)

U. rogersi 14.7 9.7 18.4 15 33.5 29.5 54.9 50.8 South-eastern GC, Mexico The present

study

Urotrygon

aspidura

18 17 - - 25.2 28.5 - - San Felipe, Puerto Peñasco,

Matanchen Bay, northern and

southern GC

De la Rosa-

Meza

(2010)

U. aspidura 15 - - - 26.5 - - - Pacific coast of Colombia Torres-Palacios

et al. (2019)

Abbreviations: DW, disk width; DWfm, size at first maturity; DW50%, size at 50% of sexual maturity; DWmobs, maximum observed disk width; GC, Gulf of

California.
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Pup abortion has also been reported for this species in La Paz Bay,

Baja California Sur, Gulf of California (Ehemann et al., 2022).

Pup abortion or premature birth is common in ray species caught as

by-catch, particularly during trawling (Adams et al., 2018; Wosnick

et al., 2018a, 2018b). This process of capture-induced parturition causes

recruit mortality and reduces maternal survival in elasmobranchs, even if

the mature female survives the capture event (Adams et al., 2018;

Wosnick et al., 2018a, 2018b). In addition, capture stress suffered by

pregnant rays such as southern fiddler ray Trygonorrhina dumerilii

(Castelnau, 1873) could alter traits and survival (e.g., smaller size, reduced

growth, altered burying behavior, reduced boldness, altered swimming

behavior) of neonates (Finotto et al., 2021). Therefore, these issues could

be investigated in future studies for the analysed species.

Several breeding and nursery areas (e.g., Playa Sur Mazatlan,

lagoon complex Santa Maria Bay-Altata, and Teacapan in Sinaloa) in

the south-eastern Gulf of California have been reported for some

round rays like U. halleri, U. chilensis, and U. nana (Nava-Nava, 2013;

Salom�on-Aguilar, 2015). Nevertheless, other spatiotemporal analyses

are necessary to determine the specific breeding and nursery areas

for U. maculatus and U. rogersi in the studied zone (e.g., Carlisle

et al., 2007; Heupel et al., 2007).

A lower abundance of immature individuals in the catches is impor-

tant to prevent growth overfishing (Akhilesh et al., 2020; Pauly, 1988;

Raje & Joshi, 2003). However, the high catch of mature individuals

(including pregnant females) could lead to recruitment overfishing (Allen

et al., 2013; Walters & Martell, 2004; Woodhams & Harte, 2018), which

affects the abundance of elasmobranchs (D'Alberto et al., 2022; Di

Lorenzo et al., 2022; Musick et al., 2000). In particular, bottom-trawl fish-

eries have caused marked declines in the abundance of several ray spe-

cies (Coll et al., 2013; Dulvy et al., 2014; Dureuil et al., 2018; Winter &

Arkhipkin, 2023), including U. rogersi (Kyne et al., 2020).

Considering that all stages of maturity were found in the catches from

fishery-independent shrimp trawl surveys, ecological risk or demographic

assessment analyses are needed to characterize the vulnerability and

responses of studied round ray populations to fishing mortality (Barnett

et al., 2013; Gallagher et al., 2012; Santana et al., 2020). Other analyses,

such as the seasonality of catches, the spatiotemporal distribution, and the

reproductive cycle (e.g., seasonal variations in the gonadosomatic and

hepatosomatic indices, ovulation time, embryonic growth) of analysed spe-

cies are needed too. In addition, in future studies it would be important to

obtain data from the commercial shrimp fishery to determine its effect on

round ray populations, considering the potential advantages of the closed

fishing period for the shrimp trawl fishery in the GC (early April to early

September) as an indirect protection measure for analysed round rays.

Future analyses could also use multiple data sets (both fishery-

independent and fishery-dependent data) to improve the estimation of

life-history and fishery parameters (Dennis et al., 2015; Kacev et al., 2017).

5 | CONCLUSIONS

Differences in DW50 between sexes and between species were found

depending on the model used, highlighting the convenience of using a

multi-model approach and inference.

Differences in the DW50 of U. rogersi with previous studies could

be due to the existence of subpopulations related to the environmen-

tal conditions or fishing pressure, though other factors could be

influencing such estimations, such as sampling size, selectivity, depth

of capture, as well as the criteria to determine maturity stages. Both

analysed species showed low fecundities. However, the early maturity

of U. maculatus in comparison to other species in the family Urotrygo-

nidae suggests that this species could be less affected than other

round rays by fishing pressure.

Future analysis of the depth and seasons influencing the by-catch of

round rays is needed. In addition, other studies are needed to determine

the abundance of the species in the by-catch from commercial shrimp

trawling, and how it may affect the populations of these species over

time. Furthermore, it is necessary to determine if the non-fishing period

established for the shrimp fishery (early April to early September) could

be beneficial for the population of these species.

Our results can help in the development of future management

and conservation strategies for the studied species. The estimated

DW50 for U. maculatus and U. rogersi presented here could be used as

a reference point to establish a minimum size of capture for these

species. Although they are not targeted species, round rays are com-

monly used for bait, fish meal, local consumption (meat), or for sale in

local markets, as well as their increasing importance in the aquarium

trade (Morales-Saldaña et al., 2022).
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supervised the research activity. A. Hiromi Arellano-Cuenca and David

Rivas-Landa carried out the laboratory work, and together with Darío

A. Chávez-Arrenquín, performed fieldwork and data collection. Alain

García-Rodríguez and Felipe Amezcua processed and analysed the

data. Alain García-Rodríguez wrote the manuscript with input from all

co-authors.

ACKNOWLEDGMENTS

A.G.R. thanks the General Direction of Academic Personnel (DGAPA-

National Autonomous University of México) for the postdoctoral fel-

lowship. Karla C. Garcés-García created the map of the study area.
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size at sexual maturity of the bat ray (Myliobatis californica) in north-

western Mexico through a multi-model inference. Fisheries Research,

231, 105712. https://doi.org/10.1016/j.fishres.2020.105712

Girard, M., & Du Buit, M. H. (1999). Reproductive biology of two deep-

water sharks from the British Isles, Centroscymnus coelolepis and Cen-

trophorus squamosus (Chondrichthyes: Squalidae). Journal of the Marine

Biological Association of the United Kingdom, 79(5), 923–931. https://
doi.org/10.1017/S002531549800109X

Gompertz, B. (1825). On the nature of the function expressive of the law

of human mortality. Philosophical Transactions of the Royal Society of

London, 115, 513–583. https://doi.org/10.1098/rstl.1825.0026
González-González, L. D. V., Cruz-Escalona, V. H., Ehemann, N. R., Cruz-

Agüero, G. D. L., Abitia-Cárdenas, L. A., Mejía-Falla, P. A., &

Navia, A. F. (2020). Richness and relative abundance of batoids from

the artisanal fishery in the Espiritu Santo archipelago, BCS, Mexico.

GARCÍA-RODRÍGUEZ ET AL. 13FISH
 10958649, 0, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1111/jfb.15709 by U
niversidad N

acional A
utonom

a D
e M

exico, W
iley O

nline L
ibrary on [04/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/aqc.2591
https://doi.org/10.1111/faf.12710
https://doi.org/10.1002/aqc.3754
https://doi.org/10.1002/aqc.3754
https://doi.org/10.4194/1303-2712-v18_8_09
http://cicese.repositorioinstitucional.mx/jspui/handle/1007/844
http://cicese.repositorioinstitucional.mx/jspui/handle/1007/844
https://doi.org/10.1016/j.marpol.2015.04.016
https://doi.org/10.1016/j.marpol.2015.04.016
https://doi.org/10.1038/s41467-022-32035-3
https://doi.org/10.1038/s41467-022-32035-3
https://www.gob.mx/profepa/documentos/norma-oficial-mexicana-nom-029-pesc-2006
https://www.gob.mx/profepa/documentos/norma-oficial-mexicana-nom-029-pesc-2006
https://doi.org/10.7554/eLife.00590
https://doi.org/10.1016/j.cub.2021.08.062
https://doi.org/10.1046/j.1523-1739.2002.00416.x
https://doi.org/10.1046/j.1523-1739.2002.00416.x
https://doi.org/10.1126/science.aau0561
https://doi.org/10.1093/icesjms/fsm169
https://doi.org/10.1016/j.fishres.2008.06.016
https://doi.org/10.1016/j.fishres.2008.06.016
https://doi.org/10.1016/j.rsma.2022.102175
https://doi.org/10.1590/1982-0224-20160022
https://doi.org/10.1590/1982-0224-20160022
https://doi.org/10.15578/ifrj.15.2.2009.29-35
https://doi.org/10.15578/ifrj.15.2.2009.29-35
https://nsuworks.nova.edu/occ_facarticles/154
https://doi.org/10.3389/fmars.2021.631798
https://doi.org/10.1111/j.1095-8649.2012.03235.x
https://doi.org/10.1111/j.1095-8649.2012.03235.x
https://doi.org/10.1016/j.fishres.2020.105639
https://doi.org/10.1016/j.fishres.2020.105712
https://doi.org/10.1017/S002531549800109X
https://doi.org/10.1017/S002531549800109X
https://doi.org/10.1098/rstl.1825.0026


Hidrobiol�ogica, 30(1), 37–47. https://doi.org/10.24275/uam/izt/dcbs/

hidro/2020v30n1/gonzalez

Haddon, M. (2011). Modeling and quantitative methods in fisheries (second

ed.). Taylor & Francis Group, LLC.

Harry, A. V. (2018). Evidence for systemic age underestimation in shark

and ray ageing studies. Fish and Fisheries, 19(2), 185–200. https://doi.
org/10.1111/faf.12243

Herrera-Valdivia, E., L�opez-Martínez, J., Vargasmachuca, S. C., & García-

Juárez, A. R. (2016). Taxonomic and functional diversity of the bycatch

fishes community of trawl fishing from northern gulf of California,

Mexico. Revista de Biologia Tropical, 64(2), 587–602. https://doi.org/
10.15517/rbt.v63i3.15852

Heupel, M. C., Carlson, J. K., & Simpfendorfer, C. A. (2007). Shark nursery

areas: Concepts, definition, characterization and assumptions. Marine

Ecology Progress Series, 337, 287–297.
Holmes, B. J., Williams, S. M., Barnett, A., Awruch, C. A., Currey-

Randall, L. M., Ferreira, L. C., … Waltrick, D. (2022). Research methods

for marine and estuarine fishes. In B. P. Smith, H. P. Waudby, C.

Alberthsen, & J. O. Hampton (Eds.), Wildlife research in Australia: Practi-

cal and applied methods (pp. 257–286). CSIRO Publishing.

Hurvich, C. M., & Tsai, C. L. (1989). Regression and time series model

selection in small samples. Biometrika, 76, 297–307. https://doi.org/
10.1093/biomet/76.2.297

Jacob-Cervantes, M. L., & Aguirre-Villaseñor, H. (2014). Inferencia multi-

modelo y selecci�on de modelos aplicados a la determinaci�on de L50
para la sardina crinuda Opisthonema libertate del sur del Golfo de Cali-

fornia. Ciencia Pesquera, 22(1), 61–68.
Kacev, D., Sippel, T. J., Kinney, M. J., Pardo, S. A., & Mull, C. G. (2017). An

Introduction to modelling abundance and life history parameters in

shark populations. In S. E. Larson & D. Lowry (Eds.), Advances in marine

biology (Vol. 78, pp. 45–87). Academic Press. https://doi.org/10.1016/

bs.amb.2017.08.001

Katsanevakis, S. (2006). Modelling fish growth: Model selection, multi-

model inference and model selection uncertainty. Fisheries Research,

81, 229–235. https://doi.org/10.1016/j.fishres.2006.07.002
Katsanevakis, S. (2014). Inferencia con modelos múltiples y selecci�on de

modelos en pesquerías mexicanas. Ciencia Pesquera, 22(1), 3–5.
Katsanevakis, S., & Maravelias, C. D. (2008). Modelling fish growth: Multi-

model inference as a better alternative to a priori using Von Berta-

lanffy equation. Fish and Fisheries, 9, 178–187. https://doi.org/10.

1111/j.1467-2979.2008.00279.x

Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2004). Applied linear

statistical models (fifth ed.). McGraw-Hill/Irwin.

Kyne, P. M., Charvet, P., Areano, E. M., Cevallos, A., Espinoza, M.,

González, A., K Herman, Mejía-Falla, P.A., Morales-Saldaña, J.M.,

Navia, A. F. (2020). Urotrygon rogersi. The IUCN red list of threatened

species 2020: E.T161335A124467453. Available at https://doi.org/10.

2305/IUCN.UK.2020-3.RLTS.T161335A124467453.en. (last accessed

16 July 2023).

Kyne, P. M., Courtney, A. J., Jacobsen, I. P., & Bennett, M. B. (2016).

Reproductive parameters of rhinobatid and urolophid batoids taken as

by-catch in the Queensland (Australia) east coast otter-trawl fishery.

Journal of Fish Biology, 89, 1208–1226. https://doi.org/10.1111/jfb.
13020

Last, P., White, W., de Carvalho, M., Séret, B., Stehmann, M., & Naylor, G.

(2016). Rays of the world. CSIRO Publishing.

Leung, A. J. X., Then, A. Y. H., & Loh, K. H. (2023). Reproductive biology,

length-weight relationship and diet of co-occurring butterfly rays,

Gymnura poecilura and Gymnura zonura, in Malaysian waters. Journal of

Fish Biology, 102(3), 564–574. https://doi.org/10.1111/jfb.15288
Liedo-Galindo, A., & González-Ania, L. V. (2005). Estimaci�on de áreas med-

iante dos métodos y su aplicaci�on para la estimaci�on de las áreas mues-

treadas en los cruceros de camar�on. INAPESCA Tech. Rep.

Lluch-Cota, S. E., Arag�on-Noriega, E. A., Arreguín-Sánchez, F.,

Aurioles-Gamboa, D., Jesús Bautista-Romero, J., Brusca, R. C.,

Cervantes-Duarte, R., Cortés-Altamirano, R., Del-Monte-Luna, P.,

Esquivel-Herrera, A., Fernández, G., Hendrickx, M. E., Hernández-

Vázquez, S., Herrera-Cervantes, H., Kahru, M., Lavín, M., Lluch-

Belda, D., Lluch-Cota, D. B., L�opez-Martínez, J., … Sierra-Beltrán, A. P.

(2007). The Gulf of California: Review of ecosystem status and sus-

tainability challenges. Progress in Oceanography, 73, 1–26. https://doi.
org/10.1016/j.pocean.2007.01.013

L�opez-Martínez, J., Herrera-Valdivia, E., Rodríguez-Romero, J., &

Hernández-Vázquez, S. (2010). Bycatch fish species from shrimp

industrial fishery in the Gulf of California, Mexico. Revista de Biologia

Tropical, 58(3), 925–942.
Luquin-Covarrubias, M. A., Morales-Boj�orquez, E., González-Peláez, S. S.,
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