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A B S T R A C T   

Deep learning has made essential contributions to classification and detection tasks applied to precision agri
culture; however, it is vitally important to move towards an adoption of these techniques and algorithms through 
low-cost and low-consumption devices for daily use in crop fields. In this paper, we present the training and 
evaluation of four recent Convolutional Neural Networks models for the classification of diseases in tomato 
leaves. A subset of the Plantvillage dataset consisting of 18,160 RGB images has been divided into ten classes for 
transfer learning. The selected models have depthwise separable convolution architecture for application in low- 
power devices. Evaluation and analysis quantitatively and qualitatively is performed via quality metrics and 
saliency maps. Finally, an implementation on the Raspberry Pi 4 microcomputer with a graphical user interface is 
developed.   

1. Introduction 

Tomato production worldwide exceeds 177 million tons. It has 
among the leading producers to Mexico, which retains a prominent 
place in international agricultural trade, reaching up to 5% of tomato 
tons traded in the world (Almaraz Sánchez et al., 2019). This production 
reflects the great efforts made by this sector, where tomato, whose 
production exceeds 4 million tonnes per year, should be highlighted. 
However, much of the country’s agricultural production is done in the 
open air (Jirón-Rojas et al., 2016), which requires a more significant use 
of pesticides (Lahiri and Orr, 2018). In consequence, higher losses and 
problems of yield and quality in the final product (Elgueta et al., 2020), 
which is why the early detection of pests and diseases is a task of 
particular interest to the region. 

In precision agriculture, the need for early detection systems is a 
pressing need due to the economic, environmental and social impor
tance of adequate and efficient use of resources for the generation of 
horticultural crops (Maes and Steppe, 2019). Currently, tomato culti
vation presents significant challenges due to the number of diseases, 
pests, and anomalies in general that can occur in these crops worldwide 
(Basak, 2016). In several areas of technology, efforts are made to 

propose solutions with different approaches, from which the results and 
environmental conditions of the production environment are continu
ously improved, such as sowing systems, monitoring, automation, har
vesting, selection, and treatments (Tangarife and Díaz, 2017; Zhang 
et al., 2018; Taqi et al., 2017; Elvanidi et al., 2018). 

In recent years, the accelerated development of open-source hard
ware has driven the development and implementation of low-cost de
vices for agricultural monitoring, which show the capacity to 
incorporate image processing and artificial intelligence. In a trend that 
continues to rise, but which presents among its main challenges the 
availability, reliability, and mobility (Khanna and Kaur, 2018); for 
example in Osroosh et al. (2017) is presented the design and imple
mentation of a monitoring system using RGB and thermal images, 
implemented in Raspberry Pi 3, which manages to work in real condi
tions and adverse environments. In Hsu et al. (2018) Raspberry Pi is used 
to design a low-cost monitoring network in agricultural applications for 
broader adoption. A monitoring environment including several devices 
and interfaces is presented in Morais et al. (2019), establishing the 
communication capability in low-cost devices for agricultural 
environments. 

The detection of diseases in agricultural fields is largely done under 
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expert visual inspection. However, it is subject to human beings limi
tations, such as fatigue when faced with long working days or error- 
prone possibility when performing a task that can become highly re
petitive (Petrellis, 2018). The development of tools for the automation of 
these tasks is a topic of continuous interest due to the complexity and 
high amount of visual and environmental factors surrounding this task. 

The growing use of deep learning models has achieved remarkable 
improvements, expressly, in classification tasks (Russakovsky et al., 
2015). However, it is not limited to this; it has also been used in fore
casting, scenario reconstruction, image enhancement, detection and 
reconstruction in agricultural applications. Xue et al. (2019), Zhang 
et al. (2019) and Kussul et al. (2017). While in the specific field of 
horticulture it has been used recently for crop classification, anomalies 
detection, water stress, classification and selection of products and dis
eases or pests detection (Maeda-Gutiérrez et al., 2020; da Costa et al., 
2020). 

In particular, the detection of diseases, pests, or anomalies can be 
characterized as a set of patterns in images of different origins, where 
the source of the images can be from various sensors, such as infrared, 
thermal, visual spectrum, multispectral, hyperspectral or chlorophyll 
fluorescence (Mahlein, 2016). This range of possibilities increases the 
complexity of decision making for the model design for disease detec
tion. A notable difference between these sensors being the bandwidth 
and number of channels that will be taken into account for the genera
tion of a data matrix. In current researches, most of the early detection 
systems are developed with multispectral images or within the visual 
spectrum, where most of the work focused on deep learning uses RGB 
images due to the amount of data already existing through previous 
researches, for replication and improvement of proposals, while the 
information from multispectral sensors, although they provide more 
information, the lack of public datasets and the cost of equipment are a 
limitation to their higher adoption, which is significant in developing 
countries. 

In related researches, most of the early detection systems are 
developed with multispectral or within the visual spectrum (RGB) im
ages (Verma et al., 2018; Barbedo, 2018; Jameel et al., 2020), where 
most of the work is focused on deep learning using the RGB space. This is 
a consequence of the amount of data already existing through previous 
researches. Although the information from multispectral sensors pro
vide more information, the lack of public datasets and the cost of 
equipment are a limitation to their higher adoption, which is significant 
in developing countries (Marconi et al., 2019). 

Thus, in recent works, deep learning has been used over machine 
learning methods due to better accuracy and hardware availability 
specifically to classify diseases in datasets of horticultural origin 
(Gutierrez et al., 2019). Deep learning and plant diseases researches 
such as (Rangarajan et al., 2018), also show transfer learning with state- 
of-the-art models AlexNet and VGG16, with higher precision results than 
those obtained with machine learning classifiers. Also, in Brahimi et al. 
(2018), classification models for ten tomato diseases are presented 
employing transfer learning from classic models such as AlexNet and 
GoogleNet; besides, saliency maps for the identification of regions on the 
leaves with some particular pattern are presented. As far as hardware 
implementations are concerned. Other efforts have been directed to use 
more modern architectures, as in Kumar and Vani (2019), where ResNet 
and Xception architectures are used with better results compared to 
previous years’ architectures. In Durmus et al. (2017), a classification 
model based on the AlexNet architecture was developed for ten classes 
of tomato images, with an implementation on the NVIDIA Jetson TX1 
hardware, and training on the same device. The efforts presented in 
Khan and Narvekar (2020) where a mixed dataset is enhanced, aims for 
a future mobile applications of the trained models, and finally, in Picon 
et al. (2019) a dataset for five crops and 17 classes was obtained from 
images in real conditions, presenting three classification models based 
on the ResNet50 architecture and developing an application for mobile 
devices that facilitates the application of the research. 

Given the background, the present work shows the results obtained 
when carrying out training through transfer learning in architectures 
that have recently been exploited for agricultural purposes, and their 
implementation in low-cost hardware, such as the Raspberry Pi 4 
microcomputer. Thus one of the objectives of this work is the imple
mentation of CNN models in a low-cost and low power consumption 
device capable of processing the information in real conditions to obtain 
results that facilitate early detection of anomalies in tomato crops. 

The rest of the paper is organized as follows. In Section 2, datasets, 
data augmentations performed and methodology for Convolutional 
Neural Networks (CNN) training is presented. In Section 3, the quality 
criteria, experimental results and the hardware implementation is 
detailed. Finally, in Section 4, the conclusions are shown. 

2. Materials and methods 

First, the dataset used and their modifications via data augmentation 
are presented, where local transformations are performed to the dataset 
then, a brief description of the CNN architectures employed are shown, 
along the hyperparameters proposed for the training stage, following, 
the results obtained are evaluated with objective and subjective criteria 
to establish advantages and disadvantage for the trained models, and 
finally, a GUI design is presented to help the usage from the hardware 
implementation. The block diagram of the proposed framework is pre
sented in Fig. 1. 

2.1. Dataset and data augmentation 

For the training of the models, the PlantVillage dataset (Hughes and 
Salathé, 2015; Mohanty et al., 2016) was selected, consisting of 54,305 
images from 14 different crops and 38 different classes consisting of 
healthy and unhealthy leaf images, in color, grayscale, and segmented 
format. From this dataset, only 18,215 images of tomato leaves divided 
into ten classes were used, only the color images were selected, the 
resolution of the images is 256×256 pixels, the number of images per 
class varies from 373 to 5,358, with an average of 1,821. In the Table 1 
the dataset for the tomato leaves are presented in more detail. In Fig. 2 
some samples with data augmentation are shown. 

To avoid overfitting on the training models, and generalize their 
response, transformations were made to increase the data, being these 
horizontal flip, and rotations in four different angles, obtaining six times 
more images from the original tomato class from PlantVillage dataset. 
The augmented dataset was split 70% for training and 30% for testing 
purposes. 

2.2. CNN architectures 

According to Brahimi et al. (2018), retraining of architectures using 
the PlantVillage dataset gives better results if performed with initial 
weights from the ImageNet dataset (Russakovsky et al., 2015) compared 
to a random weight initialization. Similarly, if all layers are labeled for 
training instead of only the top ones, the results should be superior. For 
this work, four architectures were selected to perform transfer learning: 
MobileNetV2 (3 M parameters, 90.1% Accuracy) (Sandler et al., 2018), 
NasNetMobile (5 M parameters, 91.9% Accuracy) (Zoph et al., 2018), 
Xception (22 M parameters, 94.5% Accuracy) (Chollet, 2017), and 
MobileNetV3 (3 M parameters, 75.2% Accuracy) (Howard et al., 2019) 
due to their high performance with the ImageNet Top-5 challenge and 
their relatively low number of parameters compared to deeper archi
tectures, which is mandatory for real-time crop diagnosis in resource 
constrained mobile devices, where lightweight architectures are suitable 
and proven for these tasks (KC et al., 2019). 

Depthwise separable convolutions have the primary goal of replacing 
a full convolution operator with a factorized version that obtains similar 
results with two convolution operators. Where the first layer is called 
depthwise convolution, it is a set of filters whose kernels are strictly 2D, 
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the second operator, which contains a kernel size of 1x1, reducing the 
number of channels of the processed volume exclusively. In this way, the 
number of operations and parameters in the network are drastically 
reduced, decreasing the processing time by 8 to 9 times compared to 
standard convolutions with minimal differences in accuracy (Howard 
et al., 2017). 

For context, the main ideas behind these architectures are briefly 
explained. The NasNetMobile model is the result of the process called 
NasNet search space, which consists of the definition of a convolutional 
cell, integrated by a filters bank to be trained, which is adjusted to a 
given dataset, for example, ImageNet, and from this serial cell connec
tions are made. Two variants for this cell are designed, according to the 
size of its output, either preserving the dimensions (Normal Cell) or 

reducing them according to the stride value used in the internal con
volutions (Reduction Cell). The number of connected cells for the 
network design is considered an adjustable parameter for new datasets. 
MobileNetV2 includes, in addition to depthwise separable convolutions, 
adds the use of linear bottlenecks, which consists of 1x1 convolutional 
filters depth-wise processed, reducing these depths with a minimum 
variation in the final results, consequently decreasing the number of 
operations and parameters to be adjusted in the network. Xception, 
(Extreme Inception) is a variant of the inception block (Szegedy et al., 
2015), which contains parallel filter banks of 1x1 (bottleneck) followed 
by others with different kernel size, then a concatenation at the output of 
these modules is performed. It is proposed to use a single bottleneck 
layer for a whole set of filters within the module and then apply 
depthwise separable convolutions, the main difference with other ar
chitectures being this change in the order of operations. Finally, Mobi
leNetV3 is presented in two sizes (small and large), according to the 
target application, designed from Network Architecture Search (NAS) to 
optimize the architecture of each block and the NetAdapt algorithm, in 
charge of optimizing the number of filters per layer, consequently a 
proposed architecture is presented that combines blocks used in Mobi
leNetV1 and MobileNetV2, using hard-sigmoid as activation function. 

2.3. Transfer learning 

The hyperparameters shown in Table 2 were defined to perform the 
training. The four models mentioned above, MobileNetV2, NasNetMo
bile, Xception and MobileNetV3 were trained through transfer learning, 
setting an input resolution of 224x224 pixels. Weights coming from 

Fig. 1. Diagram with the main stages of the proposal.  

Table 1 
Image quantity for tomato classes before and after data augmentation.  

Class Number of images with data augmentation 

Bacterial Spot 2,133 12,798 
Early Blight 1,010 6,060 
Healthy 1,595 9,570 
Late Blight 1,916 11,496 
Leaf Mold 962 5,772 
Mosaic Virus 1,779 10,674 
Septoria Leaf Spot 1,677 10,062 
Two Spotted Spider Mites 1,412 8,472 
Target Spot 373 2,238 
Yellow Leaf Curl Virus 5,358 32,148 
Total 18,215 109,290  

Fig. 2. Samples from data augmentation.  
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ImageNet training models were selected for initialization. Also, the last 
layers were replaced, so the feature map obtained at the end of the CNN 
is connected to a GlobalAveragePooling layer followed by a softmax 
layer with ten classes at the output. All CNN layers were labeled as 
trainable for a deep training. 

3. Experimental results 

In this section, the quality metrics to be used are presented first, 
followed by the results per-model and per-class, as well as examples of 
classification to obtain quantitative and qualitative overview of each 
model. Finally, we present the overall measures for the models, gath
ering in addition to the descriptors, possible causes, and areas of op
portunity for improvement of results. 

3.1. Quality criteria 

Results presentation and comparison between models, the following 
quality measures were considered: Accuracy, which is the ratio of 
correctly labeled images to the total number of samples, as shown in (1). 
Precision is the probability given a positive label, how many of them are 
actually positive (2). Recall or Sensitivity is the accuracy of positive 
predicted instances describing how many were labeled correctly (3). 
And F1 score, as an additional measure of classifier accuracy, which 
considers both precision and recall (4) 

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)  

Precision =
TP

TP + FP
, (2)  

Recall =
TP

TP + FN
, (3)  

F1 = 2*
Precision*Recall

Precision + Recall
, (4)  

where TP refers to true positives, TN to true negatives, FP to false pos
itives and FN to false negatives. Also training times and confusion 
matrices are presented for the four models implemented in this work. 

3.2. Evaluation results 

First, the quality metrics for each of the ten classes are presented. 
There it is possible to observe in detail the performance of the classifiers 
used and the labels that represent a significant challenge within the 
dataset. Table 3 shows the quality measurements and the number of test 
images for each one. 

Concerning quality metrics by class, Bacterial Spot for the Mobile
NetV2 model, contains a high precision value and low recall. This sug
gests that there were no false positives in its response, which would 
indicate that images from another class were labeled as Bacterial Spot. 
However, there were many false negatives, meaning that of the total 
images from Bacterial spot, less than half were correctly evaluated. 
Similar responses are observed for the Early Blight and Target Spot 

classes. The NasNetMobile model shows comparable behavior for Early 
Blight and Target Spot. 

On the other hand, a low precision value and high Recall value, as 
shown for the Leaf Mold and Septoria Leaf Spot classes for the Mobile
NetV2 and NasNetMobile models, or even more evident in the Mosaic 
Virus class of MobileNetV2, indicates that for those classes there is a 
high value of false positives, labeling images from other classes to 
Mosaic Virus. It is important to note the precision and Recall for the 
Healthy class from all four classifiers, as they indicate their performance 
in differentiating between healthy and diseased leaves is close to optimal 
with dataset-like images. Specifically, if there is a maximum precision, 
the number of false positives will remain at virtually zero. Therefore, 
precision is vital in early detection stages since, in case of error by the 
classifier, it is preferable to label diseases where there are none (low 
recall) than to miss a disease (low precision). Despite having a lower 
score for disease classification, MobileNetV2 separates better healthy 
leaves than diseased ones, compared to NasNetMobile. If it were 
necessary to establish the model for binary classification with the best 
relationship response and lower processing time, MobileNetV3 would be 
the one chosen. Xception, on the other hand, is the classifier with the 
best performance; however, its computational cost is higher due to its 
number of parameters. F1 score presents a measure that combines pre

Table 2 
Hyperparameters to perform training stage.  

Hyperparameters Values 

classes 10 
epochs 10 
Batch size 24 
Optimizer Adam 
learning rate 0.001 
β1,β2  0.9, 0.999 
∊  1e− 7   

Table 3 
Image quantity for tomato classes before and after data augmentation.  

MobileNetV2 Precision Recall F1 score  

Bacterial Spot 1.00 0.38 0.55 
Early Blight 0.81 0.44 0.57 
Healthy 1.00 0.97 0.99 
Late Blight 0.97 0.90 0.94 
Leaf Mold 0.64 0.82 0.72 
Mosaic Virus 0.12 1.00 0.22 
Septoria Leaf Spot 0.68 0.91 0.77 
Two Spotted Spider Mites 0.83 0.76 0.80 
Target Spot 0.83 0.68 0.75 
Yellow Leaf Curl Virus 0.99 0.76 0.86 

NasNetMobile Precision Recall F1 score  

Bacterial Spot 0.98 0.81 0.88 
Early Blight 0.83 0.47 0.60 
Healthy 1.00 0.88 0.94 
Late Blight 1.00 0.69 0.81 
Leaf Mold 0.40 0.84 0.54 
Mosaic Virus 0.87 0.82 0.84 
Septoria Leaf Spot 0.69 0.98 0.81 
Two Spotted Spider Mites 0.92 0.76 0.83 
Target Spot 0.94 0.67 0.78 
Yellow Leaf Curl Virus 0.91 1.00 0.95 

Xception Precision Recall F1 score  

Bacterial Spot 1.00 1.00 1.00 
Early Blight 0.99 0.99 0.99 
Healthy 1.00 1.00 1.00 
Late Blight 0.99 1.00 1.00 
Leaf Mold 0.97 1.00 0.99 
Mosaic Virus 1.00 1.00 1.00 
Septoria Leaf Spot 1.00 1.00 1.00 
Two Spotted Spider Mites 1.00 0.99 0.99 
Target Spot 1.00 1.00 1.00 
Yellow Leaf Curl Virus 1.00 1.00 1.00 
MobileNetV3 Precision Recall F1 score  

Bacterial Spot 0.99 0.97 0.98 
Early Blight 0.94 0.95 0.94 
Healthy 1.00 0.99 0.99 
Late Blight 0.97 0.98 0.97 
Leaf Mold 0.96 0.99 0.98 
Mosaic Virus 0.98 0.99 0.99 
Septoria Leaf Spot 1.00 0.94 0.97 
Two Spotted Spider Mites 0.98 0.98 0.98 
Target Spot 0.99 0.97 0.98 
Yellow Leaf Curl Virus 0.98 1.00 0.99  
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cision and recall with equal weighting; this value is useful if, in the 
classifier application, a false negative has the same importance as a false 
positive. 

Fig. 3 shows the confusion matrix charts, where it is easier to identify 
the classes that caused the most error in the trained models. There the 
number of images that form either true or false positives for each class 
can be obtained, which is a visual aid for a better understanding of the 
precision and recall values obtained for each disease and model. 

As a complement to the confusion matrices, Fig. 3 shows the 
Precision-Recall curves obtained for each class, where each classifier is 
observed. It is essential to highlight the behavior of MobileNetV3 and 
Xception, which are close to the ideal behavior, considering that 
MobileNetV3 presents a smaller number of parameters. On the other 
hand, MobileNetV2 and NasNetMobile obtain a favorable result in the 
healthy class, but present a lower performance before classes with a low 
number of positive instances, which indicates that classes with a higher 
number of elements are favored (see Fig. 4). 

Since the image quantity per class is not uniform, the average values 
for each quality metric should be adjusted by incorporating weights per 
class, according to (5). In Table 4, the total results for the classifiers are 
presented together with the training time required for their generation. 
The accuracy obtained from the four models, which is a value that tells 
us what proportion of true instances, positive and negative, were 
correctly classified by the model. For the MobileNetV2 and NasNetMo
bile architectures, the accuracy values are lower compared to the rest for 
two main reasons: first, the number of parameters to be trained; for this 
work, all layers were retrained, which achieves a greater generalization 
in the response compared to proposals that replace only fully connected 
layers (Brahimi et al., 2018). In consequence, training times are notably 
larger despite containing a lower number of parameters. Second, the low 
number of parameters is a preponderant factor when implemented low- 
power and low-performance devices are considered. The relationship 
between the number of parameters and the quality of the classifier 

results is evident. However, in this relationship and with a view to 
implementations in low-power devices, it must be established which are 
the least possible parameters capable of delivering acceptable results for 
a specific application and how they can be applied effectively for each 
architecture. Therefore, if the target hardware must offer the possibility 
of a wide adoption and lower cost, we can establish that the processing 
capacity will necessarily be lower, and a general comparison as shown in 
Table 4 is a first indicator that can aid to identify light architectures and 
their general performance for applications in agriculture, while the 
analysis in Table 3 indicates us in a detailed way the type of error to be 
expected, consequently the decision making and adjustments with a 
view to a classification system through artificial intelligence can be more 
specific and objective, through the design and implementation of ar
chitectures tailored to the application. It is possible to determine that the 
training performed is consistent with state-of-the-art results. State-of- 
the-art models AlexNet, GoogLeNet, and resNet18 were trained for 30 
epochs, with ImageNet weights at initialization and replacing only top 
three layers (Maeda-Gutiérrez et al., 2020). Due to high number of pa
rameters, were not considered for hardware implementation. 

WeightedMetric =

∑T

class=1
IClass*Qclass

Itotal
(5)  

where Iclass denotes the image quantity per a given class, Qclass represents 
the quality metric obtained per-class and Itotal is the total quantity images 
from the testing dataset. 

The following are qualitative results, where saliency maps are pre
sented to show the activation areas for some of the trained classes. The 
objective of this visualization is to corroborate that the model has 
learned relevant patterns in the training images. Saliency maps are 
extracted using a CNN on the image labels, so no additional annotation 
is required. The computation of the image-specific saliency map is 
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Fig. 3. Confusion matrix charts generated with PlantVillage tomato dataset and deep transfer learning with, a) MobileNetV2 b) NasnetMobile c) Xception and, d) 
MobileNetV3 CNN architecture. 
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estimated for a single class, and only requires a single back-propagation 
pass (Simonyan et al., 2014). In Fig. 5 some examples are shown, which 
were taken from the test data set, there, the regions of the leaves that 
activate each model for its respective class are exposed. In particular the 
Xception column shows that the higher activation is done in areas where 
the leaves have anomalies, while the other two models have some in
consistencies, this translates into classification errors. 

3.3. Hardware implementation 

The models were trained and evaluated on a CPU intel i7-7700 with 
16 Gb RAM and GPU using an NVIDIA GTX 1070 with 1920 CUDA cores 
and a memory interface of 8 Gb GDDR5. The process was implemented 
on the IDE Spyder 4.1.3, and the main stages were programmed using 
OpenCV 3.4.2, Keras 2.3.1, TensorFlow 2.1, tf-keras-vis 0.3.1 for sa
liency maps (Kotikalapudi, 2017), and Tensorflowlite-bin (Hyodo, 
2019) for hardware implementation. Raspberry Pi 4 contains a Broad
com BCM2711, Quad-core Cortex-A72 (ARM v8) at 1.5 GHz, 4 Gb 
SDRAM, and a maximum of 15 W power consumption, including the 
webcam used in this work, which is a Logitech C920. 

For the implementation in raspberry pi 4, Operating System Rasp
bian 10 (Buster) was installed. First, a graphic user interface (GUI) was 
designed to allow the capture of photographs. This interface was 
developed through Tkinter to avoid third party libraries and to avoid 
compatibility issues, proposing the use of two main windows. In the first 
one, located on the left, captured from the webcam is shown; in the right 
one, the last screenshot within the region of interest frame is displayed. 
In addition, there are three buttons at the bottom for capturing 
(screenshot and obtain ROI), analyzing (Classify with CNN architec
ture), and saving images, all saved images are stored in SD memory card 
where the operative system is installed. Since the CNN models are 
exclusively for classification from leaves images, the proposal is to use of 
a reference frame within the display. The saved image is selected from 
the original screenshot. At the same time, the detection, date and time 
are recorded in the name of the generated file. Concerning the CNN 
architectures implementation, a reduction of the models is made to be 
compatible with TensorFlowLite; this entails the quantization of pa
rameters and reduction in numerical accuracy, decreasing the compu
tational cost required to make the predictions. The GUI is shown in 
Fig. 6. In those examples, the proposed implementation and a screenshot 
from a mobile device is presented. Using a remote desktop client adds 
funcionality with a touch screen and mobile devices, the remote desktop 
software used was Real VNC, client and server. For images evaluation 
from tomato crops, a confidence value of 0.8 was proposed for the top 
class predicted. 

Qualitative results were obtained from 100 images captured from a 
tomato crop that showed visible deterioration due to diseases. A labeling 
session was performed to manually select the leaves from the captured 
images in real-life conditions and classify on the trained models. The 
four trained models were used to evaluate the images. Some examples 
are presented in Fig. 7, showing the class selected by the model and the 
saliency map obtained. It should be noted that the Xception model 
showed the highest consistency when visually inspecting the results, 
which is consistent with the quantitative results presented above. The 
classification shown is derived from the Xception model in the evalua
tion of the images. The crop consisted of 12 tomato plants exposed to 
open air, after five months of growth began to develop visible signs of 
abnormalities in the leaves. 
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Fig. 4. Precision-Recall curves generated with PlantVillage tomato dataset and 
deep transfer learning. 

Table 4 
Weighted quality metrics for the trained and state-of-the-art models.  

Model Accuracy Precision Recall F1 score  time
epoch  

Parameters      

(seconds) (Millions) 

MobileNetV2 0.75 0.89 0.75 0.78 1172 3.53 
NasNetMobile 0.84 0.88 0.84 0.85 1694 5.32 
Xception 1.00 1.00 1.00 1.00 2512 22.91 
MobileNetV3 0.98 0.98 0.98 0.98 462 3.05 
AlexNet 0.98 0.98 0.98 0.98 188 61 
GoogLeNet 0.99 0.99 0.99 0.99 266 7 
ResNet18 0.99 0.98 0.98 0.98 294 11.7  
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4. Conclusions 

In this paper, a comparison and evaluation of four of the most pop
ular models were presented, with better performance with state-of-the- 
art datasets and a lower number of parameters than other architectures 
due to the incorporation of depth-wise separable convolutions and light 
architectures. This comparison was made with the Plantvillage dataset 
to perform an analysis and select the most suitable one for a particular 
application. The four models were implemented in a Raspberry Pi 4 

microcomputer to demonstrate its capacity to be incorporated in the 
future in more exhaustive fieldwork. The main contributions are: first, 
the deep transfer learning carried out for the selected models in an 
exhaustive way. Second, the evaluation and analysis with different 
quality metrics to describe the behavior of the models quantitatively and 
qualitatively to a major extent. Third, quantification of the models for 
their implementation in Raspberry Pi 4 and finally, development of a 
GUI for the use of the models trained in PC, Raspberry Pi 4, or in mobile 
devices. 

Original MobileNetV2 NasnetMobile Xception MobileNetV3

Fig. 5. Saliency maps for Bacterial Spot (first row), Late blight (second row) Leaf mold (third row) and Yellow leaf curl virus (fourth row).  

Fig. 6. Hardware implementation a) GUI designed, b) working system, c) GUI screenshot from mobile device and d) image from labeling session.  
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