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Concept maps have been extensively used in education, especially in science teaching. There is strong
evidence that their use is associated with increased knowledge transfer and retention across several
instructional conditions, settings and methodological features. However, constructing a concept map is
complex and difficult for students, especially newbies. Consequently, there is a necessity to provide
feedback to the learners during the authoring of their concept maps. There are several concept-mapping
tools that provide feedback but none of them provide immediate or just-in-time (JIT) feedback. This kind
of feedback is important for two reasons: First, low achieving or low mastery students benefit greatly
from this type of feedback. Second, when students start out badly, with incorrect propositions, they tend
to continue with further incorrect propositions until the map is grossly incorrect and JIT feedback could
prevent this situation. This paper presents a practical application of Ohlsson’s theory of learning from
performance errors to provide JIT feedback during the construction of concept maps. It is shown that
by creating an Entity-Relationship (E-R) schema that incorporates additional elements into the standard
schema for concept maps, the schema can be implemented with Datalog, benefiting from the use of its
deductive features to provide immediate feedback to the learner. Finally, some field related examples
are provided.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Concept maps (Novak & Gowin, 1984) are the product of
mapping one or more categorical propositions (Hurley, 2010).
These propositions are composed of two classes, known as the
referent and the relatum, and a term, representing a binary or
dyadic relation (Cohen & Nagel, 1993). Graphically, these elements
take the form of nodes and labeled directed arcs, respectively. The
nodes represent concepts or ideas within a subject area or domain,
and the labeled directed arcs are binary relations which explain
how two concepts are related.

As an educational tool, concept maps are based on the notion
that concept interrelatedness is an essential property of knowl-
edge, and the empirical finding that content understanding (for
example, of a school subject) is represented by well-structured
knowledge (O’Neil and Klein, 1997; Ruiz-Primo, Shavelson, Li, &
Schultz, 2001). They have been applied to enhance both individual
and collaborative learning, and there is strong evidence that their
use is associated with increased knowledge transfer and retention
across several instructional conditions, settings and methodologi-
cal features (Daley & Torre, 2010; Horton et al., 1993; Nesbit &
Adesope, 2006). Additionally, their use in education, according to
different researchers (Anohina-Naumeca, Grundspenkis, &
Strautmane, 2011; Ruiz-Primo et al., 2001; Yin, Vanides, Ruiz-
Primo, Ayala, & Shavelson, 2005), can be characterized along a con-
tinuum from high-directed to low-directed. The more elements are
provided to the learners, the higher the degree of directedness and
vice versa. Fig. 1 shows some of the components of concept maps
that can be provided by the teacher or that can be left for the stu-
dents to create on their own.

However, despite their graphical simplicity, and no matter the
degree of directedness, the construction of concept maps is com-
plex and difficult for students, especially for newbies (Chang,
Sung, & Chen, 2001; Cimolino, Kay, & Miller, 2003). Consequently,
learner support or feedback during the construction of a concept
map is recommended (Coffey et al., 2003). Feedback helps learners
determine performance expectations, judge their level of under-
standing, and become aware of misconceptions (Mason &
Bruning, 2001). Without appropriate feedback, as Chang et al.
(2001) point out, learners have few opportunities to reflect upon

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.08.055&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2014.08.055
mailto:francisco_alvarez_montero@uas.edu.mx
mailto:fernan@sip.ucm.es
mailto:arvsmcmg@telefonica.net
http://dx.doi.org/10.1016/j.eswa.2014.08.055
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


F.J. Álvarez-Montero et al. / Expert Systems with Applications 42 (2015) 1362–1375 1363
their own thinking, and this reduces the beneficial effects of
constructing a concept map.

In this sense, feedback must be differentiated from the
assessment or diagnosis of concept maps. The latter addresses
the question of how to measure the quality of a concept map by
assigning a score, after the time allocated for the concept mapping
task is over (Anohina & Grundspenkis, 2009). Feedback, in turn, can
be defined as any message generated in response to a learner’s
action (Mason & Bruning, 2001). There are several types of feed-
back. In this paper, feedback must be understood as immediate
or just-in-time (JIT) feedback, which is a kind of feedback that is
automatically given to the learner, when he or she commits an
error. Immediate feedback has been successfully implemented in
many Intelligent Tutoring Systems (Graesser, Conley, & Olney, in
press; Nwana, 1990) and there is evidence showing that low
achieving or low mastery students benefit greatly from this type
of feedback (Mason & Bruning, 2001; Shute, 2008). Additionally,
some researchers such as Cimolino et al. (2003) have found that
when students start out badly, with incorrect propositions, they
tend to continue with further incorrect propositions until the
map is grossly incorrect. Just-in-time, in principle, could help
prevent this situation.

There are several concept mapping tools that provide feedback
to the learner (Anohina-Naumeca et al., 2011; Chang et al., 2001;
Cimolino et al., 2003; Gouli, Gogoulou & Grigoriadou, 2009).
However, in all these tools feedback is on demand (explicitly
requested by the user) or it is delayed until the concept mapping
task is finished. This lack of immediate feedback motivated the
following research question: is it possible to provide just-in-time
feedback to the learner during the construction of a concept map?

Following our previous work (Álvarez-Montero, Sáenz-Pérez,
Vaquero, & Jacobo-García, 2012), in this paper, it is shown that
by creating a conceptual schema that incorporates two sets of
properties into the binary relations of concept maps, and
implementing it as a Datalog schema, it is possible to provide
just-in-time feedback for high-directed concept mapping tasks,
where the concepts and relations have previously been defined.
By using Datalog (Ceri, Gottlob, & Tanca, 1989), the two sets of
properties can be represented as constraints and used to provide
immediate feedback to the learner every time he or she makes a
mistake, that is, every time a constraint is violated.

This approach to just-in-time feedback is based on the core
ideas of the theory of learning from performance errors (Ohlsson,
1996, 2011) and the Constraint Based Modeling paradigm for
Intelligent Tutoring Systems (Chrysafiadi & Virvou, 2013;
Graesser et al., in press; Ohlsson & Mitrovic, 2007) which focus
on what properties a good solution must have and posit that a
correct solution can never violate the constraints that follow from
these properties.

For implementation purposes, the Entity-Relationship (E-R)
model (Chen, 1976) is used to create the conceptual schema, and
the Datalog Educational System (DES) (Sáenz-Pérez, 2011) is the
deductive system employed to capture the data, the constraints
on these data, and provide the feedback. The rationale is that since
Datalog and the E-R model are based on the relational data model
Fig. 1. Degree of directedness in concept mapping tasks.
(Chen, 1976; Ullman, 1988), the conceptual schema can be easily
mapped and implemented as a Datalog schema. In addition, thanks
to the more expressive data model, more complex constraints
(i.e., including non-linear recursion and duplicate elimination)
can be stated.

The rest of the article is organized as follows: First, Ohlsson’s
theory of learning from performance errors is summarized. Second,
the properties of binary relations necessary to provide just-in-time
feedback, their inclusion in the standard structure of concept maps
and its implementation using DES are addressed and presented.
Finally, some conclusions and future work are discussed.
2. Learning from performance errors

The theory of learning from performance errors (Ohlsson, 1996,
2011) states that, although humans have the innate ability to catch
themselves making errors, this ability has imperfections, as
Gilovich (1991) points out. Consequently, anyone can make a
mistake. For instance, declaring a false statement or drawing an
incorrect conclusion. The explanation is that this happens because
there is a disassociation between someone’s declarative and prac-
tical knowledge. Practical knowledge, also known as procedural
(Ohlsson, 1996) or generative knowledge (Ohlsson & Mitrovic,
2007), is a set of rules for generating actions or behaviors that have
some probability of being appropriate, correct or useful in a partic-
ular context. Declarative knowledge, in turn, enables a person to
evaluate the outcome of an action or behavior, and judge it to be
correct or incorrect.

Consequently, in order to learn from errors and eliminate the
disassociation, a learner needs to reflect on the outcomes of
his/her actions. And for that purpose, declarative knowledge in
the form of integrity constraints is therefore appropriate. These
constraints function as self-monitoring devices by which the
learner can evaluate or judge the correctness of the action sequence
generated by his/her (possibly incomplete or incorrect) practical
knowledge (Ohlsson, 1996). This way, it is possible for a student to
modify or update his procedural or generative knowledge base by
inserting a new rule that does not violate the constraint.

Consider an example from the domain of chemistry taken from
(Ohlsson, 1996, 2011). A learner is trying to construct the struc-
tural formula for an organic molecule (its so-called Lewis struc-
ture). Suppose we have a carbon atom that already has 8 valence
electrons. Then the learner adds a hydrogen atom to the carbon
atom and then, discovers that the carbon atom now has more than
eight valence electrons. This is an error because atoms strive
toward the noble gas configuration, which, in the case of carbon,
requires 8 valence electrons, that is, the carbon atom already was
in its noble gas configuration. The constraint that follows from this
example is that: if the current number of valence electrons for a
particular atom is V and the maximum number of valence elec-
trons for atoms belonging to that substance is N, then it had better
be the case that V is smaller than or equal to N (or else some error
has been committed).

One can see the parallel here with the notion of integrity check-
ing in the field of deductive databases (Colomb, 2004; Olivé, 1991),
which is a process that verifies that a given base update (a set of
insertions and/or deletion of base facts) satisfies a set of constraints
that have the form of deductive rules, also called integrity rules.
Hence, in our particular case, concept mapping can be seen as a
jigsaw puzzle where a learner seeks to achieve total integrity,
i.e., correctness and validity of his/her concept map, w.r.t. a prefab-
ricated map, and receives feedback every time he/she makes an
assertion that violates the constraints imposed to a relation linking
a referent and a relatum. Fig. 2 shows a very general schema of the
proposed notion.



Fig. 2. General schema for the proposed immediate feedback approach.
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Additionally, since the style of constraints in this theory, as well
as in the Constraint Based Modeling paradigm for Intelligent Tutors
(i.e., CBM), is declarative in the sense of logic programming, as long
as the constraints are not violated, the order of operations does not
matter (Graesser et al., in press). However, procedural problem-
solving can also be modeled. If a domain is governed by principles
that pertain to the ordering of problem solving steps, then those
principles can be cast as path constraints (Mitrovic & Ohlsson,
2006).

From an implementation perspective, providing feedback using
this constraint-based approach offers several advantages over
other means of implementing feedback, such as Model Tracing
(Graesser et al., in press). Chrysafiadi and Virvou (2013) enumerate
the following benefits: (1) It is not necessary to have a runnable
expert module, which may be difficult or even impossible to
develop for some domains, such as database design or SQL query
generation; (2) Extensive studies of typical errors made by stu-
dents (i.e., bug libraries) are not required. It is even also advanta-
geous over probabilistic methods, such as Bayes networks, which
require estimates of prior probabilities (Mitrovic, Mayo,
Suraweera, & Martin, 2001).

In the next section, the notion of properties of binary relations
as constraints for concept mapping purposes is developed, focusing
on what Hsieh and Gloria (2002) denominate ‘‘knowledge of
response feedback’’, that is, feedback that informs the learner
whether the answer is correct.
3. Properties of binary relations

Concept maps, as explained in the introduction, have a pretty
simple structure: Nodes, with a tag or name, denoting concepts,
and labeled directed arcs representing binary relations. Fig. 3
shows an E-R schema of this structure. Its representation using
the E-R model, as shown in Fig. 3, is also very simple: Two entity
types (i.e., Concepts and Relations) and a (ternary) relationship
Concepts Rela�onsBinaryRela�on

From

To Name

Rela�on

Name

Fig. 3. Standard structure of concept maps.
type (i.e., BinaryRelation) relating them. Both entity types are iden-
tified by Name attributes.

As it can be seen, the schema does not include any validation or
constraint elements beyond the cardinality between entity and
relationship types, and primary keys. Therefore, the schema needs
to be modified in order to accommodate such elements. To achieve
this goal we follow a three step approach: First, we explain the
notion, next, we modify the E-R schema, and finally, some Datalog
code developed using the Datalog Educational System (Sáenz-
Pérez, 2011) is presented. All the examples in this paper are bun-
dled in the distribution of DES (Sáenz-Pérez, 2014a), in the folder
examples/ontology.

3.1. Algebraic properties of binary relations

Many binary relations have a set of properties denominated by
some researchers (Jouis, 2002; Röhrig, 1994; Álvarez-Montero,
Vaquero, & Sáenz-Pérez, 2008) as algebraic properties of relations.
These properties, according to Olivé (2007), can be defined as con-
straints. Consequently, integrity rules can be defined to verify that
these properties or constraints are not violated. In particular, these
properties are: symmetry, antisymmetry, asymmetry, transitivity,
intransitivity, reflexivity and irreflexivity. Using first order logic
(FOL) formulas, a relation R(p1:E, p2:E) linking two entities or con-
cepts is:

� Symmetric if: R(x, y) ? R(y, x).
� Antisymmetric if: R(x, y) ^ R(y, x) ? x = y.
� Asymmetric if: R(x, y) ? R(y, x).
� Transitive if: R(x, y) ^ R(y, z) ? R(x, z).
� Intransitive if: R(x, y) ^ R(y, z) ? R(x, z).
� Reflexive if it can link a concept to itself: E(x) ? R(x, x).
� Irreflexive if it cannot link an entity to itself: E(x) ? R(x, x).

Nevertheless, relations with only one property occur very infre-
quently. The majority of binary relations present a combination of
3 properties. A review of the literature (Badiru & Cheung, 2002;
Gero, 2000; Goldfarb, 2003; Gratton, 2010) shows that there is
consensus on six combinations:

1. (Antisymmetric, Reflexive, Transitive). The combination of
this triplet typifies any partial order. Examples of this triple
are: ‘‘is a’’ and ‘‘less or equal than’’.

2. (Asymmetric, Irreflexive, Transitive). A binary relation with
this triplet is used to state that the referent is greater than
or less than the referent, by some objective or subjective
scale. Examples of this triplet are: ‘‘ancestor of’’, ‘‘greater
than’’ and ‘‘less than’’.



Table 2
Rules for defining the outcome of linking two concepts with a relation.

Rule
No.

IF..THEN rule

R1 IF Relation (X, Y, ‘‘is a’’) AND Relation (Y, Z, ‘‘is a’’) THEN Relation
(X, Z, ‘‘is a’’)

R2 IF Relation (X, Y, ‘‘example’’) AND Relation (Y, Z, ‘‘is a’’) THEN
Relation (X, Z, ‘‘is a’’)

R3 IF Relation (X, Y, ‘‘is a‘‘) AND Relation (X, Z, ‘‘value‘‘) THEN NOT
Relation (Y, Z, ‘‘value‘‘) AND NOT Relation (Y, Z, ‘‘attribute‘‘) AND
NOT Relation (Z, Y, ‘‘is a‘‘) AND NOT Relation (Z, Y, ‘‘kind of‘‘) AND
NOT Relation (Z, Y, ‘‘part of‘‘) AND NOT Relation (Z, Y, ‘‘example‘‘)

R4 IF Relation (X, Y, ‘‘kind of’’) AND Relation (Y, Z, ‘‘is a’’) THEN Relation
(X, Z, ‘‘is a’’)

R5 IF Relation (X, Y, ‘‘is a’’) AND Relation (Y, Z, ‘‘part of’’) THEN Relation
(X, Z, ‘‘part of’’)

R6 IF Relation (X, Y, ‘‘part of’’) AND Relation (Y, Z, ‘‘part of’’) THEN
Relation (X, Z, ‘‘part of’’)

R7 IF Relation (X, Y, ‘‘example’’) AND Relation (Y, Z, ‘‘part of’’) THEN
Relation (X, Z, ‘‘part of’’)
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3. (Asymmetric, Irreflexive, Intransitive). This triplet asserts
that the referent is the agent of the verb or has the property
of the noun that describes the relation. Examples of this
triplet are: ‘‘father of’’, ‘‘sitting on the legs of’’ and ‘‘starred
in’’.

4. (Symmetric, Irreflexive, Intransitive). Binary relations
expressing kinship or social status, but that do not imply
what Lyons (1977) calls converseness, are defined by this
triple. For instance: ‘‘married to’’, ‘‘sibling of’’, and ‘‘first
cousin of’’.

5. (Symmetric, Reflexive, Intransitive). All compatibility,
proximity or tolerance relations are described by this
triplet. It declares that both the referent and the relatum
are close to each other, share something, or have something
in common, by some objective or subjective scale or measure.
Examples of these binary relations are: ‘‘has/have at least 2
grandparents in common with’’ and ‘‘is within a distance of
X kilometers from’’ and ‘‘shares a border with’’.

6. (Symmetric, Reflexive, Transitive). This triplet characterizes
all equivalence relations such as: ‘‘as tall as’’, ‘‘equal to’’ and
‘‘means the same as’’.

There is less agreement about Cause-Effect binary relations. In
this paper the position of Taylor (1993) is adopted, where this kind
of relations is defined by the following triplet: (Antisymmetric,
Irreflexive, Intransitive). Additionally, such relations are assumed
to be relative to a particular domain, and are normally associated
with laws or regularities which govern that domain and act as con-
straints upon what may happen.

There are approaches to concept mapping, such as the ones
depicted in Pirnay-Dummer, Ifenthaler, and Spector (2010),
Shute, Jeong, Spector, Seel, and Johnson (2009), Strautmane
(2012), which focus on binary relations. However, the first two
seek to analyze the quality of a concept map, and its evolution
through time, w.r.t. several descriptive measures (e.g.,
connectedness and ruggedness) as well as determine the degree
and strength to which binary causal relations among concepts/
nodes hold, by using statistical techniques such as Bayesian
networks.

The approach that is closest to ours is the one presented in the
concept mapping tool IKAS (Strautmane, 2012). Its goal is to
expand the prefabricated map with extra binary relations denom-
inated hidden and inverse relations (Anohina, Vilkelis, &
Lukasenko, 2009), which are logical consequences of linking two
or more concepts with a relation. Nevertheless, instead of using
algebraic properties, IKAS relies on pre-identified combinations
of relations and their corresponding outcomes expressed as rules.
Tables 1–3, taken from Strautmane (2012), show some of the
combinations and rules used in IKAS.

This approach has severe limitations. First, Tables 1–3 are
expanded only when a new combination of relations is discovered.
Table 1
Combinations of relations that produce hidden relations.

Rel. 1 Rel. 2 Allowed Rel. 3 Rule No.

1 Is a Is a Yes Is a R1
2 Is a Part of Yes Cannot be specified –
3 Is a Attribute Yes Cannot be specified –
4 Is a Example Yes Is a R2
5 Is a Value Yes No extra relation R3
6 Is a Kind of Yes Is a R4
7 Part of Is a Yes Part of R5
8 Part of Part of Yes Part of R6
9 Part of Attribute Yes Cannot be specified –
10 Part of Example Yes Part of R7
This makes the construction of the tables a never ending an error-
prone effort. Second, some rules are incomplete. For instance, rules
R1 and R2 in Table 2 try to obtain the transitive closure
(Backhouse, 2011) of relations. However, paths involving more
than three concepts cannot be calculated. Fourth, symmetry is
confused with the inverse of a relation. For example, the ‘‘is sibling
of’’ relation depicted in Strautmane (2012) is symmetric, and is an
example of the following triplet: (Symmetric, Irreflexive, Intransi-
tive). This means that if a learner states ‘‘A is sibling of B’’ then it
is also stating, although implicitly, ‘‘B is sibling of A’’. Inverse
relations are not symmetric and usually represent relations depict-
ing triplets 1, 2 and 3. Finally, it does not include any restrictions
on the logical consequences of relations, which opens the possibil-
ity for asserting nonsensical propositions such as ‘‘A is sibling of A’’,
‘‘Turtle is a Mammal’’ and ‘‘Homo sapiens ancestor of Homo
neanderthalensis’’.

We demonstrate that by extending the standard schema for
concept maps, it is possible to easily design and implement a
way to overcome most of the limitations presented before and pro-
vide just-in-time feedback. Fig. 4 shows the extended E-R schema,
which now has one more relationship type (i.e., HasAp) and one
more entity type (i.e., AlgebraicProperties). From this E-R schema
we can now use Datalog to overcome the problems with Straut-
manés approach. Nevertheless, in order to avoid cluttering the arti-
cle with Datalog code, we focus on small practical examples of the
usage of Datalog rules in a concept-mapping scenario. The rela-
tional and Datalog schema obtained from the E-R schema can be
consulted in the annex of this article.

For instance, consider a concept map composed of the proposi-
tions ‘‘Map means the same as Chart’’, ‘‘Chart means the same as
Graph’’ and ‘‘Graph means the same as Diagram’’. Using the Datal-
og Educational System (DES) this would be represented with the
following facts:

binary_relation (same_meaning, ‘Map’, ‘Chart’).

binary_relation (same_meaning, ‘Chart’,

‘Graph’).

binary_relation (same_meaning, ‘Graph’,

‘Diagram’).

Attaching the transitivity property to this relation can be done

with the fact:

has_algebraic_property (same_meaning,

transitive).



Table 3
Inverse relations and their corresponding rules.

Relation type Direction Inverse relation Corresponding IF..THEN rule

Is-a Subclass ? Class Subclass-is IF Relation (X, Y, ‘‘is a’’) THEN Relation (Y, X, ‘‘subclass-is’’)
Kind-of Subkind ? Kind Subkind-is IF Relation (X, Y, ‘‘kind of’’) THEN Relation (Y, X, ‘‘subkind is’’)
Part-of Part ? Whole Consists-of IF Relation (X, Y, ‘‘part of’’) THEN Relation (Y, X, ‘‘consists of’’)
Example Example ? Class For-example IF Relation (X, Y, ‘‘example’’) THEN Relation (Y, X, ‘‘for example’’)
Attribute Object ? Property Characterizes IF Relation (X, Y, ‘‘attribute’’) THEN Relation (Y, X, ‘‘characterizes’’)
Value Property ? Value Value-for IF Relation (X, Y, ‘‘value’’) THEN Relation (Y, X, ‘‘value-for’’)
Before First event ? Second event After IF Relation (X, Y, ‘‘before’’) THEN Relation (Y, X, ‘‘after’’)

Concepts BinaryRela�on

From

To

Name

HasAP

AlgebraicProper�esName

Rela�ons Name

h the notion of algebraic properties.
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and adding the following rule to the definition of binary relations:
binary_relation (BinaryRelation, From, To):-

has_algebraic_property (BinaryRelation,

transitive),

binary_relation (BinaryRelation, From, Mid),

binary_relation (BinaryRelation, Mid, To).

With this rule, the meaning of a binary relation with the transitivity
property attached is intensionally overloaded with all the facts
derived by this property, which can be checked at the system
prompt (DES>) with the following query:

DES> binary_relation (same_meaning, F, T)

{

binary_relation (same_meaning, ’Chart’,

’Diagram’),

binary_relation (same_meaning, ’Chart’,

’Graph’),

binary_relation (same_meaning, ’Graph’,

’Diagram’),

binary_relation (same_meaning, ’Map’, ’Chart’),

binary_relation (same_meaning, ’Map’,

’Diagram’),

binary_relation (same_meaning, ’Map’, ’Graph’)

}

Info: 6 tuples computed.

Using the same facts, symmetry can be handled by applying the
next fact and rule:

has_algebraic_property (same_meaning, symmetry).

binary_relation (BinaryRelation, From, To):-

has_algebraic_property (BinaryRelation,

symmetry),

binary_relation (BinaryRelation, To, From).

Fig. 4. Extended E-R schema wit
and obtain the implicit propositions ‘‘Chart means the same as
Map’’, ‘‘Graph means the same as Chart’’ and ‘‘Diagram means the
same as Graph’’:

DES> binary_relation (same_meaning, F, T)

{

binary_relation (same_meaning, ’Chart’, ’Map’),

binary_relation (same_meaning, ’Diagram’,

’Graph’),

binary_relation (same_meaning, ’Graph’,

’Chart’),

.

.

.
}

Info: 16 tuples computed.

All of the above rules address some of the logical consequences of
linking two concepts with a relation that has certain algebraic prop-
erties. Nonetheless, some individual properties impose additional
restrictions. In particular, the majority of them prohibit the exis-
tence of certain types of cycles in a map while the rest imposes
restrictions on the transitive closure of a relation.

For example, we could think of a map with the ‘‘Homo neander-
thalensis is ancestor of Homo sapiens’’ proposition, which has the
‘‘ancestor of’’ relation defined by the triplet (Asymmetric, Irreflex-
ive, Transitive):

binary_relation (ancestor_of, ‘Homo

neanderthalensis’, ‘Homo sapiens’).

has_algebraic_property (ancestor_of,

asymmetric).

has_algebraic_property (ancestor_of,

irreflexive).

has_algebraic_property (ancestor_of,

transitive).
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asymmetric_violation (BinaryRelation, From,

To):-

has_algebraic_property (BinaryRelation,

asymmetric),

binary_relation (BinaryRelation, From, To),

From n= To,
binary_relation (BinaryRelation, To, From).

:- asymmetric_violation (BinaryRelation, From,

To).

irreflexive_violation (BinaryRelation, From,

From):-

has_algebraic_property (BinaryRelation,

irreflexive),

binary_relation (BinaryRelation, From, From).

:- irreflexive_violation (BinaryRelation, From,

To).

In this case it should not be possible to state ‘‘Homo sapiens is
ancestor of Homo neanderthalensis’’ neither ‘‘Homo sapiens is
ancestor of Homo sapiens’’, because of the asymmetry and irreflex-
ivity properties of the relation. With DES, both asymmetry and
irreflexivity can be checked with the following (where the com-
mand /assert Rule allows to interactively adding a rule to the
deductive database):

DES> /assert binary_relation (ancestor_of, ‘Homo

sapiens’, ‘Homo neanderthalensis’) Error:

Integrity constraint violation.

ic (BinaryRelation, From, To):-

irreflexive_violation (BinaryRelation, From,

To).

Offending values in database: [ic (ancestor_of,

Homo sapiens, Homo sapiens), ic (ancestor_of,

Homo neanderthalensis, Homo neanderthalensis)]

DES> /assert binary_relation (ancestor_of, ‘Homo

sapiens’, ‘Homo sapiens’)

Error: Integrity constraint violation.

ic (BinaryRelation, From, To):-

irreflexive_violation (BinaryRelation, From,

To).

Offending values in database: [ic (ancestor_of,

Homo sapiens, Homo sapiens)]

Since our approach to concept map construction requires the
explicit assignment of algebraic properties to binary relations, we
might be interested in letting the concept map author know that
not all the propositions required for a binary relation to be transi-
tive are already stated in the map. For example, let us consider the
‘‘Map means the same as Chart’’ example. If we want to state ‘‘Map
means the same as Graph’’, it should not be possible to state so
unless the proposition ‘‘Chart means the same as Graph’’ is already
stated. This goal can be achieved with:

transitive_closure (BinaryRelation, From, To):-

binary_relation (BinaryRelation, From, To).

transitive_closure (BinaryRelation, From, To):-

transitive_closure (BinaryRelation, From, Mid),

transitive_closure (BinaryRelation, Mid, To).

has_algebraic_property (same_meaning,

explicit_transitive).
explicit_transitive_violation (BinaryRelation,

From, To):-

has_algebraic_property (BinaryRelation,

explicit_transitive),

lj (transitive_closure (BinaryRelation, From,

To),

binary_relation (B, F, T),

(BinaryRelation=B, From=F, To=T)),

is_null (F).

:- explicit_transitive_violation

(BinaryRelation, From, To).

The predicate explicit_transitive_violation looks for the
tuples in the transitive closure that are not in the binary relation.
To this end, the metapredicate lj computes the left outer join of
the two input relations (first two arguments) under a given condi-
tion (its third argument). If there is a tuple in the first relation
which does not find a counterpart in the second relation, the corre-
sponding values (B, F and T) are set to null. The built-in is_null is
used to check if a value is a null. Note that this is a special feature in
DES which is not found in other deductive systems but common in
relational databases. If an offending tuple is asserted under this con-
straint, an error is issued:

DES> /assert binary_relation (same_meaning,

‘Chart’, ‘Graph’)

Error: Integrity constraint violation.

ic (BinaryRelation, From, To):-

explicit_transitive_violation

(BinaryRelation, From, To).

Offending values in database: [ic (same_meaning,

Map, Graph)]

Redundant propositions can also be monitored. For instance, given a
transitive propositional chain of the type: ‘‘Map means the same as
Chart’’ and ‘‘Chart means the same as Graph’’, then it is possible to
avoid redundant propositions such as ‘‘Map means the same as
Graph’’ by using the following:

redundant_transitive_violation (BinaryRelation,

From, To):-

has_algebraic_property (BinaryRelation,

non_redundant_transitive),

group_by (transitive_closure (BinaryRelation,

From, To),

[BinaryRelation, From, To], (C=count, C>1)).

has_algebraic_property (same_meaning,

non_redundant_transitive).

:- redundant_transitive_violation

(BinaryRelation, From, To).

The predicate redundant_transitive_violation looks for
tuples that occur more than once in the transitive closure of binary
relations with the property non_redundant_transitive

attached. The metapredicate group_by allows detecting them in
an analogous way it could be done in SQL with the clause GROUP

BY. With duplicates enabled (with the command /duplicates

on), a group is built for each triple <binary relation, from, to> and
if there is more than one tuple for a group, it is collected in redun-

dant_transitive_violation. So, it is not possible to state ‘‘Map
means the same as Graph’’ in the example above:
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DES> /assert binary_relation (same_meaning,

‘Map’, ‘Graph’)

Error: Integrity constraint violation.

ic (BinaryRelation, From, To):-

redundant_transitive_violation

(BinaryRelation, From, To).

Offending values in database: [ic (same_meaning,

Map, Graph)]

Intransitivity also poses restrictions on whatever triplet it is used:
(Asymmetric, Irreflexive, Intransitive), (Symmetric, Irreflexive,
Intransitive) and (Symmetric, Reflexive, Intransitive). In particular,
it prohibits the assertion or deduction of additional propositions.
For example, in a map with the propositions ‘‘A is father of B’’ and
‘‘B is father of C’’:

binary_relation (father_of, ‘A’, ‘B’).

binary_relation (father_of, ‘B’, ‘C’).

has_algebraic_property (father_of, asymmetric).

has_algebraic_property (father_of, irreflexive).

has_algebraic_property (father_of,

intransitive).

It should not be allowed to state that ‘‘A is father of C’’. That is, the
assertion or deduction of the transitive closure, or parts of it, is not a
possibility as it would create nonsensical propositions. The follow-
ing rule expresses that constraint:

intransitive_violation (BinaryRelation, From,

To):-

has_algebraic_property (BinaryRelation,

intransitive),

binary_relation (BinaryRelation, From, Mid),

From n= Mid,
binary_relation (BinaryRelation, Mid, To),

binary_relation (BinaryRelation, From, To).

:- intransitive_violation (BinaryRelation, From,

To).

Therefore, if we want to assert that ‘‘A is father of C’’ the assertion is
rejected:

DES> /assert binary_relation (father_of, ‘A’,

‘C’).

Error: Integrity constraint violation.

ic (BinaryRelation, From, To):-

intransitive_violation (BinaryRelation, From,

To).

Offending values in database: [ic (father_of, A,

C)]

We have seen that algebraic properties are useful to prevent the
assertion of redundant propositions, and also to avoid the declara-
tion of a range of false propositions. However, they are not enough
to prevent certain nonsensical propositions. For instance, let us con-
sider the ‘‘Turtle is a Mammal’’ example cited before in this subsec-
tion. We know that the ‘‘is a’’ relation can be defined by the triplet
(Antisymmetric, Reflexive, Transitive) but, is any of these properties
useful to avoid asserting such a nonsensical proposition?

The answer is obviously no, because science has come to decide
that turtles are not mammals by other means other than basic
algebraic properties. To avoid asserting this kind of propositions
the following question has to be answered: Why is an animal a
mammal? And for that purpose we need facts that help answer
that question. Luckily, since concept maps are most used in science
teaching, these facts should be easily available. This notion is
developed in the next subsection.

3.2. Intrinsic properties of binary relations

Intrinsic properties, as explained before, are facts that answer
why the referent can be linked to the relatum by a particular binary
relation (i.e., is_a, component_of, etc.). For instance, if one of the
challenges for the student is to state that ‘‘Turtle is a Reptile’’ in a
concept map, then there must be some facts that justify the assertion
of such a proposition. For the ‘‘Turtle is a Reptile’’ proposition, the
answer to the question could be: because a turtle is cold-blooded
and lays eggs. In our approach, this knowledge acts as a constraint
that rejects the assertion of these justification facts, if they have
not been already stated by the learner in his/her concept map.

Nevertheless, intrinsic properties, as opposed to algebraic prop-
erties, are not general properties of relations. They are properties
assigned to a particular combination (Relation, Relatum). For
instance, the ‘‘cold-blooded and lays eggs’’ properties are assigned
to the (is_a, Reptile) combination. For another proposition such as
‘‘Plants eaten by Reptile’’, then, the intrinsic properties of the
(eaten by, Reptile) combination could be: because plants provide
minerals, proteins and vitamins. Fig. 5 shows the newly extended
conceptual schema with the notion of intrinsic properties.

Just as with the algebraic properties, the use of intrinsic proper-
ties as constraints can be handled by Datalog. For the example
involving the ‘‘Turtle’’ and ‘‘Reptile’’ concepts:

binary_relation (is_a, ‘Turtle’, ‘Reptile’).

has_algebraic_property (is_a, reflexive).

has_algebraic_property (is_a, asymmetric).

has_algebraic_property (is_a, transitive).

We can add the intrinsic properties ‘‘Turtle lays Eggs’’ and ‘‘Tur-
tle is Cold-blooded’’ to the (is_a, Reptile) combination:

has_intrinsic_property (is_a, ‘Reptile’,

reptile_features).

reptile_features (Reptile):-

feature (Reptile, ’Lays Eggs’),

feature (Reptile, ’Cold-blooded’).

and then use the following:

reptile_features_violation (Reptile):-

binary_relation (is_a, Reptile, ’Reptile’),

not (reptile_features (Reptile)).

:- reptile_features_violation (Reptile).

to prevent the assertion of the ‘‘Turtle is a Reptile’’ proposition if the
‘‘Turtle lays Eggs’’ and ‘‘Turtle is Cold-blooded’’ propositions are not
stated before:

DES> /assert binary_relation (is_a, ‘Turtle’,

‘Reptile’)

Error: Integrity constraint violation.

ic (Reptile):-

reptile_features_violation (Reptile).

Offending values in database: [ic (Turtle)]

The linkage of two concepts by a causal relation is another example
of an assertion that needs to be justified and, also, a clear example
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of path constraints. Following Taylor (1993), this kind of assertions
should be preceded by a set of contributory causes (either all posi-
tive, all negative, or some of each) that make them true. For
instance, consider the ‘‘Person moves Table’’ proposition for the
domain of classical physics with its algebraic properties:

has_algebraic_property (moves, reflexive).

has_algebraic_property (moves, antisymmetric).

has_algebraic_property (moves, transitive).

By adding the following set of intrinsic properties: ‘‘Person
exerts Force’’ and ‘‘Force applies to Table’’, to the (moves, Table)
combination:

has_intrinsic_property (moves, ‘Person’,

move_conditions).

move_conditions (Who, What):-

exerts (Who, force),

applied_to (force, What).

and then using the following rules:

move_conditions_violation (What):-

binary_relation (moves, Who, What),

not (move_conditions (Who, What)).

:- move_conditions_violation (Object).

it is possible to tell the learner that causes must precede effects:

DES> /assert binary_relation (moves, ’Person’,

’Table’)

Error: Integrity constraint violation.

ic (Object):-

move_conditions_violation (Object).

Offending values in database: [ic (Table)]

In relational database parlance (Date, 2008; Thalheim, 2009), we
have been representing algebraic and intrinsic properties as hard
constraints, that is, as constraints that are checked whenever any
change related to the involved data sources for the constraint
occurs. However, except for the case of path constraints, in CBM
what matters is not the order of the steps leading to the solution,
but rather the compliance w.r.t. a set of constraints. This problem
is discussed in the next subsection.
3.3. Algebraic and intrinsic properties as soft constrains

Some constraints such as asymmetry and irreflexivity always
need to be enforced as hard constraints. Other constraints, if
enforced this way, impose an order of operations. For instance,
the rule that seeks a missing proposition in a transitive closure
demands certain propositions to be stated before others. This is
something that unnecessarily limits the learner during concept
mapping activities. In DES, this can be overcome by declaring the
constraint as a soft constraint (also known as a deferred constraint
(Date, 2008)) by simply removing the hard constraint:

:- explicit_transitive_violation

(BinaryRelation, From, To).

and calling the goal explicit_transitive_violation

(BinaryRelation, From, To) when the constraint is needed to
be checked. By using the ‘‘Map means the same as Chart’’ example,
if we wanted to state ‘‘Chart means the same as Graph’’, the system
would allow the assertion but it would point out to the missing
proposition when requested:

DES> /assert same_meaning (‘Map’, ‘Chart’)

DES> /assert same_meaning (‘Chart’, ‘Graph’)

DES> explicit_transitive_violation

(BinaryRelation, From, To)

{

explicit_transitive_violation (same_meaning,

‘Map’, ‘Graph’)

}

Info: 1 tuple computed.

Another alternative is to disable constraint checking with the com-
mand /check off. Then, the database can be updated and, when it
is needed to validate constraints, constraint checking can be
enabled again with /check on. All the inconsistencies are also dis-
played. However, this disables checking of all of the constraints, not
particular ones. Intrinsic properties implemented as constraints can
be handled in this same way.

4. Field related examples

In this section, three simplified examples, from the fields of
biology, social sciences and astronomy, are presented to highlight
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both the algebraic and intrinsic properties that can be used. The
complete coded examples can be retrieved from Sáenz-Pérez
(2014b) by downloading the files biology.dl, countries.dl

and cosmos.dl respectively.

4.1. Biology: the human body

Starting from the concepts ‘‘body’’, ‘‘head’’, ‘‘trunk’’, ‘‘arm’’,
‘‘leg’’, ‘‘hand’’, ‘‘toe’’, and ‘‘finger’’ we use the relations ‘‘component
of’’ and ‘‘part of’’ to derive a conceptual map for a human body. We
say that for a human body (‘‘body’’ from now on) to be considered
as such, required components must be, at least, one head and one
trunk; maybe with no arms and no legs. However, these extremi-
ties can be part of a body as well. On the one hand, we understand
under such semantics that the relation ‘‘component of’’ describes
all the required components of a concept. On the other hand, we
understand ‘‘part of’’ as the relation that describes which objects
can be part of a concept. Both relations are asymmetric, irreflexive,
and transitive. The student will be given a specification for these
relations along with its properties and will be required to fill the
concept map by adding concepts and relations between them.
Due to the algebraic properties, the system will avoid entering
erroneous inputs as: ‘‘arm is part of finger’’ if ‘‘finger is part of
hand’’ and ‘‘hand is part of arm’’ because asymmetry and irreflex-
ivity cancel all loops.

If we assume that the assertion ‘‘X is component of Y’’ implies
‘‘X is part of Y’’, then we overload the meaning of the binary rela-
tion ‘‘part of’’ with that of ‘‘component of’’, as follows:

binary_relation (part_of, X, Y):-

binary_relation (component_of, X, Y).

This means that any fact added to ‘‘component of’’ will be inten-
sionally added to ‘‘part of’’. Instead, as an alternative, we can test if
students recognize this implication by imposing the following con-
straint that will reject assertions trying to add redundant facts
about ‘‘part of’’:

:- binary_relation (component_of, X, Y),

binary_relation (part_of, X, Y).

This way, a fact as ‘‘head is part of body’’ will be rejected if ‘‘head is
component of body’’ is already asserted. But in the previous sce-
nario, the fact can be actually added. So, we can check if the student
added the redundancy by asking the meaning of the following Dat-
alog relation:

redundant (part_of, X, Y):-

binary_relation (component_of, X, Y),

binary_relation (part_of, X, Y).

with the query:

DES> redundant (R, X, Y)

{

redundant (part_of, head, body),

redundant (part_of, trunk, body)

}

Info: 2 tuples computed.

The answer to this query in this instance means that the facts
binary_relation (part_of, head, body) and binary_rela-

tion (part_of, trunk, body) are redundant.
Another consideration is to identify the concepts that can be
part of several other concepts as an intrinsic property. If we set that
only the finger can be part of more than one concept, this can be
stated as follows:

:- binary_relation (part_of, X, Y),

X n= finger,

count (direct_part_of (X, _), C),

C>1.

where the aggregate count counts the number of components
which are not fingers, and if this number is greater than 1, then
there is a constraint violation. This count is over the relation
direct_part_of which includes the facts about ‘‘part of’’ that
relates two parts directly connected, i.e., by excluding those inten-
sionally derived by transitivity (as, e.g., ‘‘finger’’ is part of ‘‘body’’).
This relation is defined as:

direct_part_of (X, Y):-

binary_relation (part_of, X, Y),

not indirect_part_of (X, Y).

indirect_part_of (X, Y):-

binary_relation (part_of, X, Z),

binary_relation (part_of, Z, Y).

So, trying to add that ‘‘toe is part of arm’’ will be rejected if ‘‘toe is
part of leg’’ is already asserted.

4.2. Social Sciences: countries

This example requires the student to classify countries and their
assignment either to the European Union as member states, or to
the United Kingdom as member countries, or to the United States
of America as union states. Students are given with a number of
countries/states, including ‘‘Germany’’, ‘‘Spain’’, ‘‘Iceland’’, ‘‘Ire-
land’’, ‘‘Scotland’’, ‘‘California’’, ‘‘Washington’’, and ‘‘Mexico’’,
among others. Besides those unions of countries/states, countries
must be classified w.r.t. the continent they belong (America and
Europe). Students then elaborate the conceptual map by joining
all these concepts with the relations ‘‘member of’’, ‘‘component
of’’, and ‘‘is a’’. For instance: ‘‘A European country is a component
of Europe’’, ‘‘European Union is a component of Europe’’, ‘‘Germany
is a European country’’, ‘‘Germany is member of the European
Union’’, ‘‘Iceland is a European country’’ would be valid facts
whereas ‘‘Iceland is member of the European Union’’ is not valid
because Iceland is a prospective member state yet. In this setting,
we can overload the meaning of ‘‘component of’’ with the meaning
of ‘‘member of’’:

binary_relation (component_of, X, Y):-

binary_relation (member_of, X, Y).

In addition to the algebraic properties attached to the relations
above, we can specify as intrinsic properties that a European Union
member state must be a country of Europe, so that a fact as ‘‘Mex-
ico is a European Union member state’’ would be rejected:

is_eu_state (Country):-

binary_relation (is_a, Country,

european_country).

is_eu_state_violation (Country):-

binary_relation (member_of, Country,

european_union),

not is_eu_state (Country).
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The constraint ensuring this property is:
:- is_eu_state_violation (Country).

Similar intrinsic properties can be specified for a UK country
and a USA state. Note also that additional conditions might be
added to the intrinsic property is_eu_state (such as that the
country has signed the Schengen Agreement).Additional intrinsic
properties include that an American state is not a country and
the other way round:

:- is_american_state_violation (State).

:- is_american_country_violation (Country).

is_american_state_violation (State):-

binary_relation (is_a, State, american_state),

binary_relation (is_a, State, country).

This way, facts as ‘‘Washington is a country’’ would be rejected pro-
vided that ‘‘Washington’’ had been stated as an American state
already. Also, facts as ‘‘Mexico is an American state’’ would be
rejected if ‘‘Mexico’’ had been stated as a country.

4.3. Science: cosmos1

Cosmology deals with a number of objects that can be repre-
sented in a hierarchy (Narlikar, 1996). The universe is composed
of galaxies, and each galaxy is composed of other objects, as plan-
etary systems, each one, in turn, composed of stars, planets and
satellites. Galaxies, stars, planets and satellites are known as cos-
mological objects (either simply objects or bodies; both terms
are interchangeably used). There are objects that are components
of bigger ones or even which are not, as, e.g., a star and the uni-
verse itself, respectively. In addition, there are objects that orbit
others, as the Moon, which orbits the Earth. Several semantic rela-
tions naturally emerge from this description: ‘‘is a’’, ‘‘part of’’,
‘‘member of’’, and ‘‘orbits’’, all of which with attached algebraic
properties ‘‘irreflexive’’ (but ‘‘is a’’ which is reflexive), ‘‘asymmet-
ric’’, and ‘‘transitive’’. The basic concepts are the cosmological
objects, as ‘‘star’’ and ‘‘Sun’’ (we say that the Sun is a star). An
instance of this conceptual map includes facts as (where % repre-
sents a remark):

% A ‘‘star’’ is an ‘‘object_type’’:

binary_relation (is_a, star, object_type).

% The ‘‘Sun’’ is an ‘‘object_instance’’:

binary_relation (is_a, ‘Earth’,

object_instance).

% A ‘‘star’’ is part of a ‘‘planetary_system’’:

binary_relation (part_of, star,

planetary_system).

% ‘‘Earth’’ is member of the object type ‘‘planet’’

binary_relation (member_of, ‘Earth’, planet).

% ‘‘Earth’’ orbits the ‘‘Sun’’:

binary_relation (orbits, ‘Earth’, ‘Sun’).

Note that we use the concept ‘‘object type’’ and ‘‘object
instance’’ analogously to types and values in common typed lan-
guages, i.e., an object type represents many possible object
instances (‘‘integer’’ represents 1, 2, . . ., and ‘‘planet’’ represents
‘‘Earth’’, ‘‘Mars’’, . . .) We specify that an object instance belongs
to an object type with the relation ‘‘member of’’, and we denote
object instances and types with the relation ‘‘is a’’ (e.g., ‘‘Earth is
an object instance’’ and ‘‘Planet is an object type’’).Many intrinsic
properties can be identified in this example and here we list some

F.J. Álvarez-Montero et al. / Expert Syste
1 This example is taken from Álvarez-Montero, Sáenz-Pérez, & Vaquero (2012).
of them. For an object to be considered as a planet, it must directly
orbit a star, and no intermediate orbiting object can be found in-
between. So, a fact as ‘‘Moon is member of planet’’ will be rejected
if the facts ‘‘The Moon orbits Earth’’ and ‘‘Earth orbits the Sun’’ are
already asserted. This can be stated with:

:- is_planet_violation (Planet).

is_planet (X):-

binary_relation (member_of, Y, star),

binary_relation (orbits, X, Y),

not (intermediate_object (X, Y)).

intermediate_object (X, Y):-

binary_relation (orbits, X, Z),

binary_relation (orbits, Z, Y).

is_planet_violation (Planet):-

binary_relation (member_of, Planet, planet),

not (is_planet (Planet)).

Analogously, a satellite must directly orbit a planet. Also, for an
object instance to be considered as a planetary system, at least it
must include a planet and a star:

:- is_planetary_system_violation

(PlanetarySystem).

is_planetary_system (X):-

binary_relation (is_a, X, object_instance),

binary_relation (member_of, X,

planetary_system),

direct_part_of (S, X),

binary_relation (member_of, S, star),

direct_part_of (P, X),

binary_relation (member_of, P, planet).

is_planetary_system_violation

(PlanetarySystem):-

binary_relation (member_of, PlanetarySystem,

planetary_system),

not (is_planetary_system (PlanetarySystem)).

Here, the predicate direct_part_of has been used to state
that a star and a planet must be directly connected to the planetary
system object. Otherwise, an object as ‘‘Milky Way’’, containing the
‘‘Solar System’’ could be a planetary system as well, which is incor-
rect. Analogously, a galaxy must include a star, at least.Another
possible consideration is that an object in any cosmological
instance must be either a type or an instance, but not both at the
same time:

:- is_object_violation (Object).

is_object (Object):-

concepts (concept, Object, 0),

not (is_object_violation (Object)).

is_object_violation (Object):-

binary_relation (is_a, Object, object_type),

binary_relation (is_a, Object,

object_instance).

This avoids asserting facts as ‘‘Earth is an object type’’ if ‘‘Earth is an
object instance’’ is already asserted, and the other way round.



Concepts BinaryRela�on

From

To

Name

HasAP

AlgebraicProper�esName

Rela�ons Name

HasIP

IntrinsicProper�esName

Rela�on
Denote

Terms

Fig. 6. Extended E-R schema with the notion of synonymy.

1372 F.J. Álvarez-Montero et al. / Expert Systems with Applications 42 (2015) 1362–1375
5. Conclusions and future work

This paper has shown a way to implement Ohlsson’s theory of
learning from performance errors to provide JIT feedback during
the authoring of concept maps in high directed scenarios, where
the concepts and the relations are to be structured in a jigsaw puz-
zle manner by the learner. The strategy used to provide JIT feed-
back relies on the use of a deductive system (i.e., Datalog) and on
the extension of the standard conceptual schema of concept maps
with algebraic and intrinsic properties which can be used as con-
straints. This is a novel approach that is not present in other con-
cept-mapping tools and has several implications.

First, concept mapping becomes an activity where the seman-
tics of binary relations, defined by algebraic and intrinsic proper-
ties, is at the center of the activity. Hence, in principle, the whole
reasoning process through which a learner builds a concept map
changes, as the student comes to realize that there a limits to what
she or he can do, while constructing a concept map, and that these
limits are imposed by the semantic of relations. However, it
remains to be seen if this change stimulates reflection and leads
to better results.

Second, as stated in the introduction, providing JIT feedback
has several advantages but in concept mapping, its main advan-
tage is that it can prevent learners that start out badly with incor-
rect propositions, to continue doing so until the map is grossly
incorrect. This is a problem encountered in concept mapping tools
where feedback is on demand (explicitly requested by the user)
or it is delayed until the task is finished (Cimolino et al., 2003).
Nevertheless, Datalog is mainly text-based, does not support the
use of graphics and does not compromise its clean declarative
style in any way (Ceri et al., 1989). Therefore, it is necessary on
the one hand, a graphic development environment, in the sense
of Visual Query Languages (Groppe, 2011) for the teachers or
instructors and, on the other hand, a suitable way to translate
Datalog query answers into appropriate and meaningful feedback
and scaffolding for the learners (Collins, Warnock, Aeillo, & Miller,
1975; Gagné, 1985; Lesgold, Lajoie, Bunzo, & Eggan, 1992;
Palincsar & Brown, 1988; Rogoff & Gardner, 1984; Sleeman &
Brown, 1982).

Fourth, the developed E-R schema presented in this paper can
be easily extended to address other problems related to the use
of concept maps in high-directed settings. For example, concepts,
and binary relations can only be given one name, described by a
term or word. Consequently, the use of synonyms by the learner
cannot be handled during evaluation (Kornilakis, Grigoriadou,
Papanikolaou, & Gouli, 2004), producing what Yin et al. (2005)
denominate bipolar scores when learners choose a name for a con-
cept or a relation. To address this problem, Kornilakis et al. (2004)
propose the use of WordNet (Miller, 1995), a lexical resource, to
address this problem and enhance the prefabricated maps with
synonyms. However, WordNet has been criticized inside
(Strautmane, 2012) and outside (Nirenburg, McShane, & Beale,
2004) the concept maps community. We contend that instead of
incorporating a resource, such as WordNet, concept maps should
have a structure that allows the introduction of terms according
to the school level (Latimer, 2001) or knowledge field (Martin,
2006; Rickards, 1984). Fig. 6 shows an E-R schema for concept
maps that allows synonymy.
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Appendix A. Annex: Datalog schema for concept maps
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