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ABSTRACT 
The Instrumental Approach and its related notions such as Instrumental Genesis and 

Instrumental Orchestrations, form a theoretical framework often cited in research on the 

teaching and learning of mathematics. Nevertheless, the impact of such interventions on 

academic achievement has not been investigated. Moreover, the reliability of the statistical 

results of these studies and the issues concerning the sample size needed to produce reliable 

and replicable results has not been addressed either. In this sense, this article presents a 

systematic review, meta-analysis and reliability assessment of studies conducted during the 

2001-2017 period, which used the Instrumental Approach as a theoretical framework. Six 

conclusions can be made from the analysis. First, that there is a very limited set of interventions 

based on the Instrumental Approach that seek to improve academic performance. Second, that 

individually most of the studies are statistically unreliable due to wide confidence intervals and 

low statistical power. Third, that although the average effect size is positive it is below Hattie’s 

zone of desired effects. Fourth, that the prediction interval is very wide showing a high level of 

heterogeneity and dispersion of effects. Fifth, that that a considerable percentage of future 

interventions can be potentially harmful. Sixth, that conducting original studies that are reliable 

and replicable require sample sizes that are way above those commonly found in the literature. 
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1.  INTRODUCTION  
At the heart of science is an essential balance between two seemingly contradictory at-

attitudes--an openness to new ideas, no matter how bizarre or counterintuitive they may be, and 

the most ruthless skeptical scrutiny of all ideas, old and new. This is how deep truths are 

winnowed from deep nonsense (Sagan, 1997 p. 287).  

 However, in the field of education this skeptical and rigorous analysis seems to be 

lacking. Myth and reality have been difficult to separate in this area (Bloom, 1972; De 

Bruyckere, Kirschner, and Hulshof, 2015; Holmes, 2016), and the adoption of educational 

practices and programs has been based on ideologies, fads and marketing, rather than on the 

scientific evidence available about their effectiveness (Kirschner & van Merriënboer, 2013, 

Slavin, 2008b). Furthermore, 91.5% of publications in education, social sciences and 

psychology confirm their hypotheses (Fannelli, 2010, 2011), which produces the illusion that 

everything seems to work when it comes to improving learning (Hattie, 2009).  

Consequently, there has been a call to base educational practice and policy on evidence 

from rigorous experiments (Kowalski, 2009; Slavin, 2008a, 2017) and to favor those 
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approaches with strong evidence. This way, what is known and true can be acted on and it can 

be established what new ideas are worth considering and how they can be tested, while what is 

superstition, fad, and myth can be discarded (Bloom, 1972).  

The issue of strong evidence has recently been the subject of much debate inside and 

outside the field of education with respect to the replicability of scientific findings (Asendorpf 

et al., 2013; Begley & Ioannidis, 2015; Goodman, Fanelli, & Ioannidis, 2016; Ioannidis, 2012; 

Ioannidis et al., 2014; Iqbal et al., 2016; Kepes & McDaniel, 2013; Munafò et al. 2017; Open 

Science Collaboration, 2015; Peng, 2011; Stodden, 2016). The evidence shows that across 

different research areas, replicability, namely the obtention of similar results using different 

samples and the same research design, is compromised due to the lack of reliability and 

accuracy of the statistical data.   

Sample size is at the center of the problem as there are many studies carried out with 

small samples (Bakker, van Dijk, and Wicherts, 2012; Flint et al., 2015; Lohse, Buchanan & 

Miller, 2016, Marszalek et al., 2011; Vadillo, Konstantinidis and Shanks, 2016). Small samples 

negatively impact the strength of the evidence in three different ways. First, the confidence 

intervals of the estimates are embarrassingly large (Brand & Bradley, 2016; Peters & Crutzen, 

2017).  Second, effects tend to be inflated or are false positives (Asendorpf et al., 2013; Bakker, 

van Dijk, & Wicherts, 2012; Eklund, Nichols, & Knutsson, 2016; Fanelli, 2010, 2011; 

Forstmeier , Wagenmakers, & Parker, 2016; Ioannidis, 2005, 2008, 2012; Ioannidis, Tarone, & 

McLaughlin, 2011; Simmons, Nelson & Simonsohn, 2011). Third, the achieved statistical 

power is very low (Asendorpf et al., 2013; Bakker, van Dijk, & Wicherts, 2012; Bogg & 

Lasecki, 2014; Button et al., 2013; Christley, 2010; Ioannidis, 2008; Keen, Pile, & Hill, 2005; 

Maxwell, 2004; Lohse, Buchanan & Miller, 2016, Vadillo, Konstantinidis, & Shanks, 2016). 

Additionally, within the field of education, even when the evidence is statistically sound, the 

number of studies providing support for a hypothesis is very low. For example, Mayer (2014, 

p. 19-21) reports that in the field of computer games for learning, only 10% (95% CI [2,18]) of 

the literature addresses academic performance or the development of cognitive skills. 

In this sense, this paper presents a systematic review and meta-analysis (Koretz and 

Lipman, 2017, Ravindran and Shankar, 2015), as well as a reliability evaluation of statistical 

results, of studies which have used the Instrumental Approach to improve academic 

achievement in mathematics.  Although this approach and its related notions (i.e., Instrumental 

Genesis and Instrumental Orchestrations) have been used as a theoretical framework for 

improving the teaching and learning of mathematics since the late 1990s (Artigue, 2002; 

, there 

are no reported efforts that have sought to examine their impact on academic performance or 

the accuracy and reliability of their statistical results. Furthermore, using the effects calculated 

for the meta-analysis, four methods for calculating sample sizes were compared. Two methods 

are based on statistical power and the other two on confidence interval width.  

Therefore, the objectives of this research are the following: 1) to determine if the 

problems of precision and reliability of statistical results are also present in the field of teaching 

and learning mathematics; 2) to find out for a simple research design of one control group and 

one treatment group, and a wide range of effects, which method gives the best results in terms 

of confidence interval width and statistical power. 

The rest of this manuscript is organized as follows. First, the interpretation of effect 

sizes with respect to academic performance is addressed. Secondly, the software used for 

statistical calculations is discussed, as well as the criteria to determine the reliability and 

precision of the results. Third, the search strategy and inclusion criteria are described. Fourth, 

the results obtained are presented. Finally, the findings obtained from the results are discussed. 
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2.  THRESHOLDS FOR INTERPRETING EFFECT SIZES 
Interpretation is essential if researchers are to extract meaning from their results (Ellis, 

2009). One of the most used conventions for effect size (ES) interpretation is the one proposed 

by Cohen (2013). He established the following thresholds for interpreting effect sizes: trivial 

[0.000-0.199], small [0.200-0.499], medium [0.500-0.799] and 

dissociated from a context of decision and comparative value, these intervals cannot be 

adequately interpreted (Glass, Smith, & McGaw., 1981).   

To contextualize the effe

barometer of influences is used. It is based on more than 800 meta-analyses, comprehending 

138 factors or independent variables, all of them related to academic achievement. The 

barometer is made to convey two things. First, if the same results can be obtained by other well-

known factors not included in the analysis. Second, if the ES is above or below average. 

The average effect size in Hattie's analysis is d= .400, and it establishes a level at which 

the effects of an innovation improve performance or academic achievement, in such a way that 

differences in learning can be clearly perceived. From this perspective, results in the range [0, 

0.149] are below average and can be attained merely by growing up. That is, through the 

physical and emotional process of maturation that comes with age. An ES within this range can 

be considered potentially harmful and probably should not be implemented (Hattie, 2009). 

Effect sizes in the following range [0.150-0.399] are below average and can be 

replicated by the work of an average teacher. However, this does not imply that simply placing 

a teacher in front of a class would lead to these results. Rather, that the teaching methods used, 

the level of expectations for the students and, the quality of the student-teacher relationships 

reflect that of a typical teacher and not that of the best teachers (Hattie, 2009). An approach 

with an ES within this interval can be regarded as in need of more consideration.  

Hence, interventions seeking to improve AC should be looking to attain effect sizes 

greater than d = 0.400 to be considered above average, and greater than d = 0.600 to be 

barometer. 

 
Figure 1. Hattie’s barometer of influence w.r.t. academic achievement 

The next section presents the software used for the statistical analysis, as well as the 

criteria for evaluating the accuracy and reliability of the statistical results. 

 

3.  Software used for statistical computations and reliability criteria 
The Excel sheets developed by Bailey (2009) and Lakens (2013), as well as the 

companion online calculator for  the book Practical meta-analysis  (Lipsey, & Wilson,, 2001) 

available from: http://cebcp.org/practical-meta-analysis-effect-size-calculator/, were used to 
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calculate the individual effect sizes of the interventions and their confidence intervals. The 

statistical power of the effects was estimated through G* Power (Faul, Erdfelder, Buchner, & 

Lang, 2009). 

The meta-analysis was performed in R (Gentleman, Huber, & Carey, 2011) using the 

procedure, packages and functions described by Quintana (2015). The REML (Restricted 

Maximum Likelihood) method was used to estimate the variability between effects or 

heterogeneity (i.e., 2). In addition, following the recommendations of Chiolero et al. (2012) 

and IntHout, Ioannidis, Rovers, & Goeman. (2016), a prediction interval was estimated, as well 

as the probabilities that future studies will obtain effects within Hattie’s zone of desired effects 

and below such area. 

A statistical result was considered reliable if and only if (1) the confidence interval does 

not contain zero, (2) the width of the confidence interval is less than the estimated effect (Brand 

& Bradley, 2016) and (3) the achieved or observed power is .80 or greater. However, these 

rules do not always work when the sample is small, and the ES is large. For example, the study 

by Elgamal, Abas, & Baladoh (2013) in the area of computer programming yields the results 

presented in table 1. 

 

Table 1.  Statistical results of the study by  

d 95% CI CI width Power 

1.719 [1.025, 2.381] 1.324 0.999 

 
Based on the criteria defined above, this result should be considered reliable. However, 

because any estimate of an effect is drawn at random from the corresponding sampling 

distribution (Peters & Crutzen, 2017), an interval width of 1.324 implies a high degree of 

inaccuracy, and most likely, a replication study will obtain a result very different from the 

original (Halsey, Curran-Everett, Vowler, & Drummond 2015). Consequently, for a result to 

be reliable, it must also have an adequate level of accuracy. Since there are no guidelines in the 

literature regarding the width of the confidence interval, the decision was made that the effects 

greater than or equal to .400 must have a full confidence interval width of 0.400 (± 0.200 half 

width) to be considered precise. Effects below 0.400 must have an interval width less than the 

effect itself.  

The evaluation of the different methods for calculating sample size was done using the 

effect sizes obtained for the meta-analysis. The statistical power and the width of the confidence 

interval produced for each method were compared to determine which method produced the 

most stable results in terms of interval width and power, across different effect sizes.  

The methods based on statistical power are represented by the safeguard.d and SSR.d. 

functions developed in R by Perugini, Gallucci, and Costantini (2014). These functions 

compute sample sizes using a target ES (the parameter d in both functions), the desired 

statistical power (the parameter power in both functions) and the percentage of times that power 

will be obtained, if the same study would be replicated an infinite number of times (the conf 
parameter in both functions). In this study, the value for both the conf and power parameters 

was .80. 

The procedures based on confidence interval width correspond to the pwr.cohensdCI 
and ss.aipe.smd functions, included in the userfriendlyscience (Peters and Crutzen, 2017) and 

MBESS (Kelly, 2007) R packages. The pwr.cohensdCI functions expects an ES (the parameter 
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d), the half width of the confidence interval (the parameter w  level (the parameter 

conf.level). The ss.aipe.smd function takes an ES (the parameter delta), the width of the interval 

(the parameter width level (the parameter conf.level) and the type of  width (the 

parameter which.width). For this investigation, the values used for the parameters of both 

functions are the following: conf.level=0.95, w=0.2, width=0.4, which.width=”Full” . However, 

for effects less than 0.300 the values of the parameters w and width were 0.15 and 0.3 

respectively. 

The search strategy and inclusion criteria used in the systematic review are described 

in the next section. 

4.  SEARCH STRATEGY AND INCLUSION CRITERIA 
Google Scholar (GS) was used as the search engine for the literature. It can be argued 

that GS is not a bibliographic or scientific literature database; however, the results of studies 

conducted in the last nine years (Chen, 2010, De Winter, Zadpoor, & Dodou, 2014; Haddaway, 

Collins, Coughlin, & Kirk, 2015; Harzing, 2014; Harzing & Alakangas, 2016; Howland, 

Wright, Boughan, & Roberts, 2009; Nourbakhsh, Nugent, Wang, Cevik, & Nugent, 2012), 

indicate that GS is at the same level of databases such as Scopus, Web of Science and PubMed, 

in terms of coverage and the recovery of relevant literature. 

Due to restrictions on the number of characters that searches in GS can support, five 

searches were done with slightly different search strings. The searches and their strings are 

presented in table 2. 

 

Table 2.  Searches performed and their search strings 

Search number Search string 

1 ("instrumental genesis" OR "instrumental 

orchestration*" OR instrumentation OR 

*orchestrations) AND ("t-test" OR 

Regression OR ANOVA OR ANOVA OR 

MANOVA OR MANCOVA) AND (Drijvers 

OR Artigue Or Trouche OR Guin OR 

Laborde) 

2 ("instrumental approach" OR "instrumental 

genesis" OR "instrumental orchestration") 

AND ("t-test" OR Regression OR ANOVA 

OR ANCOVA OR MANOVA) AND ~Math 

AND (Artigue OR Trouche OR Guin OR 

Drijvers OR Haspekian OR Laborde) AND 
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("instrumental genesis" OR "instrumental 

("instrumental approach" OR "instrumental 

(~education OR ~teaching OR ~learning OR 

~instruction) 

3 ("instrumental approach" OR 

"instrumental genesis" OR "instrumental 

orchestration") AND ("t-test" OR Regression 

OR ANOVA OR ANCOVA OR MANOVA) 

AND ~Math AND (Artigue OR Trouche OR 

Guin OR Drijvers OR Haspekian OR 

Laborde OR Rabardel) AND (~teaching OR 

~learning) 

4 ("instrumental approach" OR "instrumental 

genesis" OR "instrumental orchestration") 

AND ("t-test" OR Regression OR ANOVA 

OR ANCOVA OR MANOVA OR 

MANCOVA) AND ~Math AND (Artigue 

OR Trouche OR Guin OR Drijvers OR 

Haspekian OR Laborde OR Gueudet OR 

Rabardel) 

5 ("instrumental approach" OR "instrumental 

genesis" OR "instrumental orchestration" OR 

Instrumentation OR genesis) AND ("t-test" 

OR Regression OR ANOVA OR ANCOVA 

OR MANOVA) AND (Artigue OR Trouche 

OR Guin OR Laborde) AND ~Math AND 

(~teaching OR ~learning) 

6 ("instrumental genesis" OR "instrumental 

orchestration" OR "instrumental approach") 
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AND (t-test OR Regression OR ANOVA OR 

ANCOVA OR MANOVA OR "descriptive 

statistics" OR "summary statistics") AND 

(geometry OR calculus OR algebra) AND 

(teaching OR learning) 

 

The previous search strings were used to download potential manuscripts. The search 

was done year by year covering the 2001-2017 period. Afterwards, a selection of documents 

was done. In order to be included in the quantitative analysis, a downloaded document had to 

provide enough information to calculate an effect size, such as sample size, means and standard 

deviations (Mayer, 2014, p. 43) or any other useful statistic that can be used to calculate an 

effect size as described in the book Practical Meta-Analysis by Lipsey & Wilson (2001) and its 

companion website: http://cebcp.org/practical-meta-analysis-effect-size-calculator/. 

Additionally, each manuscript included in the final analysis was inspected to determine the type 

of technology, educational level, subject matter and instructional method used in the 

interventions. 

The results of the search and manuscript selection stages are described next. 

 

5.  LITERATURE SEARCH AND INCLUSION RESULTS 

In total, one hundred and thirteen (113) manuscripts were downloaded. However, 

ninety-two (93) were excluded with reasons and only twenty (20), that is 18.584% of the 

documents, met the inclusion criteria (see Fig. 2).  The type of publication of each manuscript 

included in the final analysis is shown in tables 3.  

 

 
Figure.2. Document search and inclusion flowchart 
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test OR Regression OR ANOVA OR Table 3.  Documents included in the final analysis and their classification  

Document Type of document 

Tarmizin & Tajudin (2006) Symposium 

Javed (2008) Unpublished doctoral dissertation 

Velez Caraballo (2008) Unpublished doctoral dissertation 

Gantz (2010) Unpublished doctoral dissertation 

El-Jiryes (2011) Unpublished doctoral dissertation 

Jiang & White (2012) Congress 

Curri (2012) Unpublished master's dissertation 

Rieß y Greefrath (2013) Congress 

DeLoach (2013) Unpublished doctoral dissertation 

Spencer (2013) Unpublished doctoral dissertation 

Drijvers et al. (2014)  Journal 

Juan (2015) Unpublished doctoral dissertation 

Jupri, Drijvers, y van den Heuvel-Panhuizen (2015) Journal 

Pelech(2015) Unpublished doctoral dissertation 

Ljajko (2016) Journal 

Rich (2016) Unpublished doctoral dissertation 

Marsh (2016) Unpublished doctoral dissertation 

 Journal 

Mainali & Heck (2017) Journal 

Ocal (2017) Journal 

 

The following section presents the results of the categorical and statistical data 

gathering, the effects obtained, the evaluation of their reliability and precision, the comparison 

of sample size methods and the final meta-analysis. 

 

5.  DATA GATHERING, META-ANALYSIS AND EVALUATION RESULTS  
The categorical data obtained from the manuscripts is presented first. Table 4 shows 

the type of technology, educational level, subject matter and instructional method used in each 

analyzed document. Figures 3, 4, 5 and 6 present the frequency distributions for technology 
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type, educational level, subject matter and instructional method. The category "Other" in figures 

3 and 6 indicates technology types and instructional methods that appear only once. 

 

Table 4.  Type of technology, educational level, subject matter and instructional method used in 

each intervention 

Manuscript Technology Educ. Level Subject Instruc. method 

Tarmizin & 

Tajudin (2006) 

Graphing 

Calculator (TI-

83) 

Middle School Algebra  NA 

Javed (2008) Rigid Tutor Vocational 

Education and 

Training (VET) 

Algebra Blenden 

learning 

(Sharma, 2010) 

Velez-

Caraballo 

(2008) 

Graphing 

Calculator (TI 

Nspire) 

High School Algebra Cooperative 

learning 

(Slavin, 2011) 

Gantz (2010) Graphing 

calculator (TI-

Nspire) 

Middle School Algebra Cooperative 

learning 

(Slavin, 2011) 

El-Jiryes 

(2011) 

Graphing 

Calculator 

(Casio 

ClassPad 300) 

Dynamic 

Geometry 

Software 

(GeoGebra) 

High School Algebra  NA 

Curri (2012) SimReal High School Trigonometry  NA 

Jiang & White 

(2012)  

Dynamic 

Geometry 

Middle School, 

High School  

Geometry  NA 
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Technology Educ. Level method 

Middle School 

 

Cooperative 

Gantz (2010) Middle School Cooperative 

 Trigonometry  

Jiang & White Middle School, 

Sotware 

(Unknown) 

DeLoach 

(2013) 

Graphing 

Calculator 

(Unknown) 

High School Algebra  Non-rule-based 

instruction 

(Merriweather 

& Tharp, 1999) 

Rieß y 

Greefrath 

(2013) 

Graphing 

Calculator 

(Casio 

Classpad) 

High School Algebra  NA 

Spencer (2013) Graphing 

Calculator (TI-

84) 

High School Algebra NA 

Drijvers et al. 

(2014) 

Web-based 

rigid tutor  

Middle School Algebra  NA 

Juan (2015)   Dynamic 

Geometry 

Software 

(GeoGebra) 

Middle School Geometry University of 

Chicago School 

Mathematics 

Project: 

Everyday 

Mathematics 

(Carroll, 1998, 

Thompson & 

Senk, 2001) 

Jupri, Drijvers, 

& van den 

Heuvel-

Web-based 

Rigid Tutor  

Middle School Algebra NA 
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Panhuizen 

(2015) 

Pelech (2015)  Graphing 

Calculator (TI-

NSpire) 

High School Algebra Four principles 

of teaching 

(Dick & 

Burrill, 2009)  

 et al. 

(2016) 

Dynamic 

Geometry 

Software 

(GeoGebra) 

University Chemistry NA  

Ljajko (2016) Dynamic 

Geometry 

Software 

(GeoGebra) 

High School Geometry NA 

Marsh (2016) Dynamic 

Geometry 

Software 

(GeoGebra) 

High School Algebra NA 

Rich (2016) Study Island Elementary 

School 

NA NA 

Mainali & 

Heck (2017) 

Dynamic 

Geometry 

Software 

(GeoGebra) 

Middle School Geometry  NA 

Ocal (2017) Dynamic 

Geometry 

Software 

University Calculus NA 
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Pelech (2015)  Four principles 

Ljajko (2016) 

Marsh (2016) 

 

Middle School 

(GoeGebra) 

 

 

 

 
Figure 3. Frequency distribution for technology types expressed as percentages 

 

 

 

 
Figure 4 for educational levels studied expressed as percentages 
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for subject matters expressed as percentages 

 

 
distribution for instructional methods expressed as percentages 

 

The statistical data from which the effect sizes of the interventions was calculated is 

presented second. However, the data was not homogenous as some interventions reported 

sample size, means and standard deviations, and others the results of hypothesis testing 
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procedures such as t-tests and ANOVAS, etc. This heterogeneity is shown in tables 5 through 

8.  Some manuscripts reported statistical data from two parts of the same achievement test and 

some others described more than one intervention with different samples. This kind of data is 

reflected using alphabetical suffixes after the document in-text citation such as:  Jiang & White 

(2012)a, Jiang & White (2012)b.  In this sense, Jiang & White (2012) report three different 

interventions, Drijvers et al. (2014) the results of two parts of the same achievement test, while 

Rich (2016) presents studies that were conducted during 6 semesters spanning three years. 

  

Table 5.  Statistics for studies with one control group and one treatment group which 

reported sample sizes, means and standard deviations 

Intervention 

or 

Evaluation 

N n.Treat M.Treat SD.Treat n.Ctrl M.Ctrl SD.Ctrl 

Tarmizin & 

Tajudin 

(2006)  

40 21 59 10.252 19 59.260 21.1890 

Javed (2008) 15 8 60.630 22.960 7 69.140 20.040 

Velez-

Caraballo 

(2008) 

93 46 58.850 14.350 47 55.170 17.200 

El-Jiryes 

(2011)  

49 25 12.640 2.480 24 12.540 3.040 

Jiang & 

White 

(2012)a 

508 276 54.190 17.640 232 46.810 15.100 

Jiang & 

White (2012) 

b 

373 210 71.260 16.090 163 69.280 15.500 

Jiang & 

White (2012) 

c 

58 15 88.270 7.01 43 87.070 10.100 
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Curri (2012) 22 11 79.200 14.200 11 74.900 14.900 

Rieß y 

Greefrath 

(2013) 

242 152 59 13 90 55 16 

DeLoach 

(2013) 

53 28 54 20 25 42 13 

Spencer 

(2013) 

405 222 655.030 7.870 183 657.740 9.680 

Drijvers et 

al. (2014) a 

810 404 6.739 1.744 406 6.978 1.724 

Drijvers et 

al. (2014) b 

799 400 6.231 2.006 399 6.386 2.114 

Juan (2015) 139 70 84.770 13.761 69 79.360 19.407 

Jupri, 

Drijvers, y 

van den 

Heuvel-

Panhuizen 

(2015) 

250 131 4.692 2.406 119 3.023 2.446 

Rich (2016)a 130 54 803.760 31.220 76 826 38.730 

Rich (2016)b 150 76 817.610 32.810 74 812.200 36.460 

Rich (2016)c 145 74 828.260 36.190 71 825.700 36.240 

Rich (2016)d 134 58 839.900 50.260 76 826 38.730 

Rich (2016)e 137 63 811.460 34.680 74 812.200 36.460 

Rich (2016)f 140 69 838 30.550 71 825.700 36.240 

Marsh 

(2016)a 

39 19 14.950 14.530 20 19.250 19.450 



ICEPL July 30-August 1, 2018, Tokyo, Japan

199

ISSN 2413-1156

Curri (2012) 22 11 79.200 14.200 11 74.900 14.900 

242 152 59 13 90 55 16 

53 28 54 20 25 42 13 

405 222 655.030 7.870 183 657.740 9.680 

Drijvers et 810 404 6.739 1.744 406 6.978 1.724 

Drijvers et 799 400 6.231 2.006 399 6.386 2.114 

Juan (2015) 139 70 84.770 13.761 69 79.360 19.407 

250 131 4.692 2.406 119 3.023 2.446 

Rich (2016)a 130 54 803.760 31.220 76 826 38.730 

Rich (2016)b 150 76 817.610 32.810 74 812.200 36.460 

Rich (2016)c 145 74 828.260 36.190 71 825.700 36.240 

Rich (2016)d 134 58 839.900 50.260 76 826 38.730 

Rich (2016)e 137 63 811.460 34.680 74 812.200 36.460 

Rich (2016)f 140 69 838 30.550 71 825.700 36.240 

39 19 14.950 14.530 20 19.250 19.450 

Marsh 

(2016)b 

39 19 27 24.160 20 15.250 12.770 

(2016) 

90 45 70.690 20.130 45 48.640 23.140 

Mainali & 

Heck 

(2017)a 

26 13 263.700 57.400 13 191.200 61.400 

Mainali & 

Heck 

(2017)b  

41 21 215.600 48.800 20 163.900 53 

Ocal (2017) 55 31 14.730 4.897 24 11.808 4.658 

Abbreviations. N, total sample size; n.Treat, sample size of the experimental or treatment group; 

M.Treat, mean of the experimental or treatment group; SD.Treat, standard deviation of the 

experimental or treatment group; n.Ctrl, sample size of the control group; M.Ctrl, mean of the 

control group; SD.Ctrl, standard deviation of the control group.  

 

Table 6.  Anova results from Gantz’s (2010) study 

N n.Treat n.Ctrl F value  

32 18 14 1.515  

 

Table 7.  Descriptive statistics from Pelech’s (2015) with 3 treatment groups and 3 

control groups 

 

Statistic Treat1 Treat2 Treat3 Ctrl1 Ctrl2 Ctrl3 

N 116 

n 15 18 23 21 16 23 

M 85.880 83.700 81.750 75.870 75 79.710 

SD 8.620 11.250 9.230 8.620 8.340 10.150 

F Value 3.695 

 

Table 8.  Statistical data from Ljajko’s (2016) study 
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N Treat.N Ctrl.N T-test value 

233 139 94 2.710 

Abbreviations. Treat1, treatment group 1; Treat2, treatment group 2; Treat3, treatment group 

3;Ctrl1, control group 1, Ctrl2, control group 2, Ctrl3, control group 3.  

 

The calculated effects are introduced third. From the data in tables 5, 6, 7 and 8, thirty 

(30) effect sizes were obtained. They are shown in table 9 along with their confidence intervals, 

the width of such intervals and the achieved statistical power. The scatter plots of Figures 7, 8 

and 9 show the relationships between the calculated effects and their respective sample sizes, 

confidence interval widths and statistical power, along with a moving average trend line (red 

dotted line) based on 4 data points. 

 

Table 9.  Effect sizes, standard errors, variances, confidence intervals and achieved 

power  

STUDY OR 

EVALUATION 

d STD.ERR VAR 95% CI CI WIDTH POWER 

Tarmizin & 

Tajudin (2006) 

-0.015 0.320 0.102 -0.643, 0.612 1.255 0.050 

Javed (2008) -0.374 0.522 0.272 -1.397,0.650 2.047 0.108 

Velez Caraballo 

(2008) 

0.230 0.208 0.043 -0.178,0.638 0.816 0.195 

Gantz (2010) 0.382 0.360 0.130 -0.322, 1.087 1.409 0.182 

El-Jiryes (2011) 0.036 0.286 0.082 -0.525,0.596 1.121 0.052 

Jiang & White 

(2012)a 

0.446 0.090 0.008 0.269,0.623 0.354 0.999 

Jiang & White 

(2012)b 

0.125 0.104 0.011 -0.080,0.330 0.410 0.223 

Jiang & White 

(2012)c 

0.126 0.300 0.090 -0.463,0.714 1.177 0.070 

Curri (2012) 0.284 0.429 0.184 -0.556, 1.124 1.680 0.097 
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d STD.ERR VAR  CI CI WIDTH WER 

0.015 0.320 0.102 0.643, 0.612 1.255 0.050 

0.374 0.522 0.272 1.397,0.650 2.047 0.108 

Velez Caraballo 0.230 0.208 0.043 .178,0.638 0.816 0.195 

0.382 0.360 0.130 0.322, 1.087 1.409 0.182 

Jiryes (2011) 0.036 0.286 0.082 0.525,0.596 1.121 0.052 

Jiang & White 0.446 0.090 0.008 0.269,0.623 0.354 0.999 

Jiang & White 0.125 0.104 0.011 0.080,0.330 0.410 0.223 

Jiang & White 0.126 0.300 0.090 0.463,0.714 1.177 0.070 

0.284 0.429 0.184 0.556, 1.124 1.680 0.097 

Rieß & Greefrath 

(2013) 

0.281 0.134 0.018 0.019,0.543 0.524 0.557 

DeLoach (2013) 0.693 0.283 0.080 0.138,1.248 1.110 0.695 

Spencer (2013) -0.310 0.100 0.010 -0.507, -

0.113 

0.394 0.872 

Drijvers et al. 

(2014)a 

-0.138 0.070 0.005 -0.276, 0.000 0.276 0.624 

Drijvers et al. 

(2014)b 

-0.027 0.071 0.005 -0.165,0.112 0.277 0.619 

Juan (2015) 0.320 0.171 0.029 -0.014,0.655 0.669 0.465 

Jupri, Drijvers, y 

van den Heuvel-

Panhuizen (2015) 

0.660 0.130 0.017 0.405, 0.915 0.510 0.999 

Pelech(2015) 0.687 0.191 0.036 0.322,1.061 0.739 0.808 

Ljajko (2016) 0.361 0.135 0.018 0.097,0 .624 0.527 0.768 

Rich (2016)a -0.617 0.182 0.033 -0.974, -

0.261 

0.713 0.931 

Rich (2016)b 0.155 0.164 0.027 -0.165, 0.476 0.641 0.156 

Rich (2016)c 0.070 0.166 0.028 -0.255, 0.396 0.651 0.070 

Rich (2016)d 0.314 0.175 0.031 -0.030,0.657 0.687 0.432 

Rich (2016)e -0.022 0.171 0.029 -0.358, 0.314 0.672 0.052 

Rich (2016)f 0.363 0.170 0.029 0.029,0.697 0.668 0.569 

Marsh (2016)a -0.280 0.322 0.104 -0.910,0.351 1.261 0.136 

Marsh (2016)b 0.600 0.327 0.107 -0.042,1.242 1.284 0.446 

(2016) 

1.008 0.224 0.050 0.569, 1.447 0.878 0.999 
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Mainali & Heck 

(2017)a 

1.181 0.425 0.181 0.348, 2.014 1.666 0.824 

Mainali & Heck 

(2017)b 

0.996 0.331 0.110 0.347, 1.645 1.298 0.875 

Ocal (2017) 0.586 0.278 0.077 0.042, 1.130 1.088 0.562 

 

 
Figure 7. Scatter plot for the effect-sample size data 

 

 
Figure 8. Scatter plot for the effect-confidence interval width data 
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Mainali & Heck 1.181 0.425 0.181 0.348, 2.014 1.666 0.824 

Mainali & Heck 0.996 0.331 0.110 0.347, 1.645 1.298 0.875 

0.586 0.278 0.077 0.042, 1.130 1.088 0.562 

 
Figure 9. Scatter plot for the effect-power data 

The evaluation of the reliability of each effect is presented fourth.  Table 10 shows this 

assessment according to the criteria established previously. Figure 10 summarizes this data 

showing the percentage of effects that do comply with each unreliability parameter.  

 

Table 9.  Reliability evaluation of effect sizes.  

STUDY OR 

EVALUATION 

CI.IN.0 CI.WIDTH>d POWER<.8 IMPRECISE RELIABLE 

Tarmizin & 

Tajudin (2006) 

YES YES YES YES NO 

Javed (2008) YES YES YES YES NO 

Velez Caraballo 

(2008) 

YES YES YES YES NO 

Gantz (2010) YES YES YES YES NO 

El-Jiryes (2011) YES YES YES YES NO 

Jiang & White 

(2012)a 

NO NO NO NO YES 

Jiang & White 

(2012)b 

YES YES YES YES NO 

Jiang & White 

(2012)c 

YES YES YES YES NO 
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Curri (2012) YES YES YES YES NO 

Rieß & 

Greefrath 

(2013) 

NO YES YES YES NO 

DeLoach (2013) NO YES YES YES NO 

Spencer (2013) NO YES NO YES NO 

Drijvers et al. 

(2014)a 

YES YES YES YES NO 

Drijvers et al. 

(2014)b 

YES YES YES YES NO 

Juan (2015) YES YES YES YES NO 

Jupri, Drijvers, 

y van den 

Heuvel-

Panhuizen 

(2015) 

NO NO NO YES NO 

Pelech(2015) NO YES NO YES NO 

Ljajko (2016) NO YES YES YES NO 

Rich (2016)a NO YES NO YES NO 

Rich (2016)b YES YES YES YES NO 

Rich (2016)c YES YES YES YES NO 

Rich (2016)d YES YES YES YES NO 

Rich (2016)e YES YES YES YES NO 

Rich (2016)f NO YES YES YES NO 

Marsh (2016)a YES YES YES YES NO 

Marsh (2016)b YES YES YES YES NO 
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YES YES YES YES NO 

NO YES YES YES NO 

DeLoach (2013) NO YES YES YES NO 

Spencer (2013) NO YES NO YES NO 

Drijvers et al. YES YES YES YES NO 

Drijvers et al. YES YES YES YES NO 

YES YES YES YES NO 

Jupri, Drijvers, NO NO NO YES NO 

 NO YES NO YES NO 

Ljajko (2016) NO YES YES YES NO 

 NO YES NO YES NO 

 YES YES YES YES NO 

 YES YES YES YES NO 

 YES YES YES YES NO 

 YES YES YES YES NO 

 NO YES YES YES NO 

Marsh (2016)a YES YES YES YES NO 

2016)b YES YES YES YES NO 

(2016) 

NO NO NO YES NO 

Mainali & Heck 

(2017)a 

NO YES NO YES NO 

Mainali & Heck 

(2017)b 

NO YES NO YES NO 

Ocal (2017) NO YES YES YES NO 

Abbreviations. CI.IN.O, CI includes zero; CI.WIDTH>d, CI width greater than d.  

 

 
Figure 10  

The results of the meta-analysis are presented in Table 12. The values of several 

statistics are shown along with their confidence intervals. Additionally, for the average effect, 

its prediction interval, as well as the probability that an effect in a replication study is greater 

or equal than 0.400 and less than 0.400 are presented. Figures 11 and 12 show the Baujat and 

forest plots for the meta-analysis. Notice that in figure 12, the red diamond is the average ES 

and the dotted line represents the prediction interval.  

 

Table 9.  Meta-analysis results and other statistics  

Statistic Value CI.LB CI.UB  PI.LB PI.UB   

Average effect  0.248 0.108 0.387 -0.427 0.923 32% 68% 

2 0.104 0.051 0.240 NA NA NA NA 

I2 81.121 67.786 90.849 NA NA NA NA 
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Q 143.144** NA NA NA NA NA NA 

Average 

sample  

138 88 188 NA NA NA NA 

Average CI 

width 

0.893 0.724 1.062 NA NA NA NA 

Average 

power 

0.481 0.354 0.608 NA NA NA NA 

**p<0.001 

Abbreviations. CI.LB, CI lower bound; CI.UB, CI upper bound;PI.LB, prediction interval lower 

bound; PI.UB; prediction interval upper bound; , probability ; P(d<0.4), 

probability d<0.4.  
Note. For the average sample size, Iglewicz and Hoaglin's robust test for multiple outliers was 

used, detecting two outliers, 799 and 810, corresponding to the samples reported by Drijvers et 

al. (2014) which were excluded.  

 

 
Figure 11. Baujat plot for the meta-analysis 
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143.144** NA NA NA NA NA NA 

138 88 188 NA NA NA NA 

Average CI 0.893 0.724 1.062 NA NA NA NA 

0.481 0.354 0.608 NA NA NA NA 

 
Figure 12. Forest plot for the meta-analysis 

The comparison between sample size methods based on statistical power and those 

based on confidence interval width is shown in figures 13, 14, 15 and 16. These figures depict 

the impact sample size has on confidence interval width and statistical power. However, since 

some of the power-based methods produced sample sizes of 80,000 and greater, the maximum 

sample size was set at 60,000 for graphing purposes.  The abbreviations used in the figures are 

the following: Safeguard.N, sample calculated with the Safeguard method; SSR.N, sample 

computed with the SSR function; Safeguard CI Width, CI width for the sample obtained with 

the Safeguard approach; SSR CI Width, CI width for the sample generated through the SSR 

method; Safeguard Power; statistical power achieved through the sample computed with the 

Safeguard method;  SSR Power, statistical power reached using the sample from the SSR 

function;  USF.N, sample generated through the userfriendly method; AIPE.N, sample obtained 
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using the AIPE approach;  USF CI Width, CI width for the sample computed through the 

userfriendly approach; AIPE CI Width, CI width for the sample obtained with the AIPE 

method; USF Power, statistical power reached with the sample from the userfriendly approach; 

AIPE Power, statistical power achieved with the sample from the AIPE method.  

 

 
Figure 12. Impact of sample size on interval width for methods based on statistical 

power 

 
Figure 12. Impact of sample size on statistical power for methods based on 

statistical power 
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Figure 13. Impact of sample size on interval width for methods based on interval 

width 

 

 

 
Figure 14. Impact of sample size on statistical power for methods based on 

interval width. 
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6.  FINDINGS AND DISCUSSION 
From the systematic review of the literature and the meta-analysis, four main findings 

can be reported. First, research that addresses the teaching and learning mathematics using the 

Instrumental Approach is unfocused and with only a small number of studies that measure the 

impact of interventions on academic performance. From 113 articles analyzed, only 20 that is 

18%, presented enough data to calculate effect sizes with respect to academic performance. 

This percentage concurs with the data provided by Mayer (2014) in the area of computer games 

for learning. In particular, the literature downloaded but excluded from the analysis indicates 

that most of the research citing the instrumental approach is composed of articles reporting: a) 

phenomenological studies; b) uncontrolled observational studies and c) survey-based studies. 

Hence, the low number of papers conducting research on academic achievement is not 

surprising. 

Algebra is the preferred research subject (60%) followed by Geometry (20%). This 

trend is reflected in the type of technology used, where graphing calculators are mainly used 

(40%), followed by dynamic geometry software (35%).  However, there is a considerable 

percentage of studies (25%) that use other technology types but only once in the analyzed 

period. A remarkable finding is the fact that 70% of studies do not report any instructional 

method. Cooperative Learning appears in two studies (10%) and four interventions (20%) 

report methods that are used once in between 2001 and 2017.  

This last point is very important from a psychological perspective. There is convincing 

evidence that instructional methods are the environmental factors that have the most influence 

on learning (Clark et al., 2010, Rosenshine, 2009). Also, because decisions about how to teach 

always reflect an underlying conception of how people learn, even if the teaching strategy, or 

the learning theory on which it is based, are not explicitly mentioned or described (Mayer, 2009, 

p.60). Consequently, it is difficult to determine, for a positive effect of sufficient magnitude, if 

the learning gains are due to the teaching method or to the technology used. It seems that the 

interventions that use the Instrumental Approach follow a technology-centered approach 

(Mayer, 2009, p. 10), where the focus is on using technology and force students to adapt 

themselves to it, rather than adapting technology to fit their needs.  

Second, the studies included in the final meta-analysis show serious methodological 

deficiencies. None of them is a randomized controlled trial. All have a quasi-experimental 

design. The lack of planning in most of them is notorious, and negatively impacts their 

accuracy, reliability and replicability. Figure 7 shows that the researchers work with the 

samples they have available and, that on average these tend to be less than 150 participants (M 

= 138, SD = 126, 95% CI [88, 188]). This is not surprising since 45% of the effects have samples 

less than 100. Therefore, the confidence intervals of the effects are embarrassingly long (M = 

0.893, SD = 0.453, 95% CI [0.724, 1.062]), making replication highly improbable, and the 

statistical power is low, indicating that if there were 100 non-null effects to be discovered, the 

typical study in the area could only discover 48 of them (M = 0.481, SD = 0.341, 95% CI [0.354, 

0.608]). 

The application of the criteria to evaluate the reliability and precision of each effect 

confirms the above results (see figure 10).  Fifty-five percent (55%)of the confidence intervals 

contain the null, the lengths of the intervals are greater than the estimated effect 90% of the 

time and 73% of the effects have a statistical power less than 0.80. Therefore, 97% of the effects 

are neither precise nor reliable. Only one effect (3%), the one reported in in Jiang & White 

(2012)a, is reliable because its sample is abnormal with respect to the observed mean: 508 

participants. 

Third, the results of the meta-analysis corroborate the findings described in points one 
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and two. The p-value of the Cochran Q test is very low (p <0.0001) and the result for the I2 

statistic of very high (81.121) which indicates a considerable variability in the distribution of 

effects (Guyatt et al., 2011). The forest plot in Figure 11 supports these results by showing the 

low level of overlapping between the confidence intervals of the effects (Higgins, 2008), 

although the Baujat plot (figure 11) indicates that only two effects contribute highly to the level 

of heterogeneity.  The data indicates that the high level of inconsistency is mainly due to: a) the 

variety of samples sizes between effects (see figure 7); b) the diversity of unknown instructional 

methods used in the studies (see figure 6) and c) the disparateness of the effects obtained (see 

table 8 and figure 6). A variable that was not considered in the analysis, and that may impact 

the level of inconsistency, is the duration of the interventions. However, in view of the 

instability of the other variables, it is plausible to conclude that it will also be very 

heterogeneous. 

The average effect obtained by the random effects model is d = 0.248, SE = 0.071, 95% 

CI [0.108, 0.387] which is considerably below the zone of desired effects. The 95% prediction 

interval has a full width of 1.350 [ -0.427, 0.923] which reinforces the conclusions derived from 

the Q and I2 tests and the forest plot. Sixty-eight percent (68%) of future studies will have 

effects less than 0.400, and additional calculations show that 40% of will be below the teacher 

effects zone and can be potentially harmful.  

Fourth, the analysis of the methods to calculate samples based on statistical power and 

the length of the confidence interval indicate that the use of power-based methods seems to be 

generally not recommended (see figures 11 and 12). The procedures tested generated narrow 

confidence intervals for effects in the interval [0.000, 0.350]. Nonetheless, the sample sizes 

produced were sometimes extremely large. Furthermore, once the effect was bigger than 0.350, 

the sample sizes obtained through these methods produced wider and wider confidence 

intervals reaching 1.404 standard deviations. An unexpected finding was that, although the 

MBESS package method is based on the same principle as the one in userfriendly one, the 

former yields very different results to the latter, in terms of sample size and confidence interval 

width. However, it is outside the scope of this work to determine the reason for this difference. 

The method provided by the userfriendlyscience package (Peters & Crutzen) is the one 

that behaves the best in terms of sample size, interval length, statistical power and the range of 

effects it covers. Figures 13 and 14 show, that a sample of N = 400 consistently produces 

intervals with a length of 0.400 standard deviations and a statistical power greater than or equal 

to 0.800, for effects in the interval [0.280, 1.00]. Effects in the interval [0.160, 0.270] require 

sample sizes between 1200 and 450 to achieve enough precision and statistical power.  

In summary, although research in the teaching and learning of mathematics based on 

the instrumental approach, is not scarce, the sample of studies for the period 2001-2017 

indicates that little progress has been made in terms of improving the learning of mathematics 

with respect to academic performance. The average effect size is well below the zone of desired 

effects and almost 70% of future studies will be below it. Since instructional methods are 

scarcely reported and used, it seems that researchers using the Instrumental Approach believe 

that technology by itself will lead to better performance. However, as research in Educational 

Psychology has consistently shown, students, specially novice ones, need a lot of guidance even 

at the metacognitive level (Harris, Santangelo, & Graham, 2010; Kirschner, Sweller, & Clark, 

2006; Rosenshine, 2009) and this guidance must be provided through an instructional method. 

Furthermore, technology needs to be adapted to support the way people learn and not the other 

way around (Mayer, 2009; Sweller, 2012).  

Finally, the precision and reliability of studies needs to be improved.  However, this 

requires the use of sample sizes larger than those commonly found in the literature (LeBel, 
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Campbell, and Loving, 2017; Peters & Crutzen, 2017; Tversky and Kahneman, 1971). If the 

population parameter is unknown, a sample size of N=1200, which is equivalent to calculating 

a sample that will give a ±0.113 confidence interval with the userfriendlyscience method, is 

sufficient to produce reliable results within the teacher effects zone and beyond the excellence 

threshold of d=0.600 set by Hattie. It can be argued that the use of samples such as those 

recommended here is costly, reduces the proportion of new findings as well as the progress in 

any area (Fiedler and Schwarz, 2016, Finkel et al., 2015). However, as LeBel, Campbell, and 

Loving (2017) point out, the benefits outweigh the costs because to increase the frequency and 

proportion of true discoveries (i.e., to be able to distinguish true from false hypotheses) it is 

necessary to reduce the rate of Type I and II errors. However, it must be underlined that the 

samples computed in this research were calculated for effects represented by Cohen’s d, and a 

two-independent-groups design. It is possible that other effects and designs will require 

different methods producing distinct sample sizes. 
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