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ABSTRACT
This article examines a Bayesian model for a nonstationary time series with an unknown number 
of change points and censored observations. Each segment is assumed to be an autoregressive 
process with order one. To estimate the number and locations of change points, we use the 
reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. The censored problem is 
solved by imputing the censored values from a multivariate normal distribution based on the 
observed part. A numerical example shows that the estimates of the number of change points 
and their localizations have little bias. Additionally, the estimates are robust to the censoring 
percentage.

Keywords: Parameter estimation, Bayesian inference, prior distributions, Metropolis algorithm, 
reversible jump Markov chain Monte Carlo algorithm. 

INTRODUCTION
A time series can present a change in the model structure and/or in some parameters 
in response to the effect of external factors on the variables of interest, and due to 
detection limits, it can also present some type of censoring on the observations. For 
example, the time series obtained when monitoring air pollutants, such as particles of 
polycyclic aromatic hydrocarbons (PAHs), carbon monoxide (CO), and sulfur dioxide 
(SO2), can have censored observations and changes in the model structure. Another 
example is the study of cloud ceiling height, where the measurement is restricted to 
the detection limit of the recording device. This variable is important as it accounts for 
weather-related accidents and flight delays.
There are several studies and theses on change point analysis and random censorship. 
However, there are only a few examples in which both topics are combined. Hušková 
and Neuhaus (2004) proposed a hypothesis test to detect changes in the censoring 
time distribution using rank-based procedures. Gombay and Liu (2000) proposed a 
procedure for determining whether a change point occurred in randomly censored 

Citation: Castro-Montoya R, 
Rodríguez-Yam GA, Peraza-
Garay F de J, Jiménez-Ramírez 
JV. 2024. Time series with 
multiple change points and 
censored observations.. 
Agrociencia. doi.org/ 10.47163/
agrociencia.v58i1.2856

Editor in Chief: 
Dr. Fernando C. Gómez Merino

Received: August 23, 2022.
Approved: November 07, 2023.
Published in Agrociencia: 
January 22, 2024.

This work is licensed 
under a Creative Commons 

Attribution-Non- Commercial 
4.0 International license.

TIME SERIES WITH MULTIPLE CHANGE POINTS 
AND CENSORED OBSERVATIONS

René Castro-Montoya1*, Gabriel Arcángel Rodríguez-Yam2, Felipe de Jesús Peraza-Garay1, 
José Vidal Jiménez-Ramírez1

1



Agrociencia 2024. DOI: https://doi.org/10.47163/agrociencia.v58i1.2856
Scientific article 2

data based on an extension of Wilcoxon’s rank statistics. Gijbels and Gürler (2003) 
considered the problem of estimating a single change point in a piecewise constant 
hazard function when the observed variables are subject to random censoring.
Several authors have developed methods to analyze time series with censored 
observations; for example, Robinson (1980) suggested inputting the censored part by 
its conditional expectation given the observed part. He sub-grouped the data vector 
so that each subgroup included one censored observation and thus required a single 
integral. Park et al. (2007) used a random vector from the conditional multivariate 
normal distribution to impute censored observations based on the observed part. The 
method involved updating parameter estimates by imputing the censored values with 
the conditional sample.
Some methods for solving the change point problem have been developed under the 
frequentist approach. For example, Davis et al. (2006) modeled a nonstationary time 
series by dividing the time series into AR process blocks and assuming that the number, 
locations, and orders of the AR processes are unknown. Lavielle and Teyssière (2006) 
considered the multiple change-points problem for multivariate time series, which 
included strongly dependent processes with an unknown number of change points.
Some papers using a Bayesian approach examine change points in time series. 
Chib (1986) modeled the change point process as a Markov chain with constrained 
transition probabilities, resulting in a non-reversible sequence. Barbieri and O’hagan 
(1996) worked on Bayesian analysis for autoregressive time series change points. 
Giordani and Kohn (2008) addressed the issue of modeling and inference for 
processes undergoing random parameter shifts at unknown dates. They presented a 
simple algorithm that further improves sampling efficiency in a class of discrete latent 
variable models that includes change points, mixture innovation, regimen switching, 
and outlier detection. The adaptive algorithm uses past draws of the discrete latent 
variables to design a proposal distribution for a Metropolis-Hasting step, significantly 
reducing computing time spent on observations where the presence or absence of a 
break or outlier is rather clear-cut.
This paper proposes a Bayesian model for a time series with an unknown number of 
change points and censored observations. The RJMCMC algorithm is used to draw 
a sample from the model. Park et al. (2007) describe an algorithm for addressing the 
censorship problem. A simulated dataset with two change points and 0, 10, and 40 % 
censoring is analyzed.

MATERIALS AND METHODS

The Bayesian model proposed

Assume the realization y1, y2, ..., yn of a time series yt, t = 0, ± 1, ± 2, ..., has k unknown 
change points at locations t1, t2, ..., tk, and that some observations are right censored at 
ct, t = 1, 2, ..., n. Thus, instead of y1, y2, ..., yn, we observe xt : = min (yt, ct).
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The ith segment between tis is assumed to be an autoregressive (AR) process of order 1,

𝑋𝑋𝑡𝑡 = 𝜇𝜇𝑖𝑖 + 𝜙𝜙𝑖𝑖(𝑋𝑋𝑡𝑡−1 − 𝜇𝜇𝑖𝑖) + 𝜀𝜀𝑡𝑡 , 𝜏𝜏𝑖𝑖−1 + 1 ≤ 𝑡𝑡 ≤ 𝜏𝜏𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑘𝑘 + 1 

 

 (1)

where 𝜀𝜀𝑡𝑡~𝑁𝑁(0,𝜎𝜎𝑖𝑖2)  are independent and identically distributed. Here, K, t1, t2, ... tk,  (0 < 𝜏𝜏1 < 𝜏𝜏2 < ⋯ < 𝜏𝜏𝑘𝑘 < 𝑛𝑛), 𝜇𝜇1,𝜇𝜇2,⋯,𝜇𝜇𝑘𝑘+1,𝜎𝜎12,𝜎𝜎22,⋯,𝜎𝜎𝑘𝑘+12 ,𝜙𝜙1,𝜙𝜙2,⋯,𝜙𝜙𝑘𝑘+1 , are the 
parameters of the model.

The priors for the number of breaks and their locations are as follows:

𝐾𝐾~𝑈𝑈(0, 1, 2,⋯ , 𝑘𝑘𝑚𝑚) 

𝑓𝑓(𝜏𝜏𝑖𝑖|𝜏𝜏1, 𝜏𝜏2, … , 𝜏𝜏𝑖𝑖−1,𝑘𝑘)~𝑈𝑈(𝜏𝜏𝑖𝑖−1 + 1,⋯ , 𝑛𝑛 − 1) 

i = 1, 2, ... k

where km is the maximum number of change points permitted in the model. We use 
independent conjugate priors for the mean and variance parameters:

𝜇𝜇𝑖𝑖,𝜎𝜎𝑖𝑖2, 𝑖𝑖 = 1, 2,⋯ ,𝑘𝑘 + 1 

𝜇𝜇𝑖𝑖~𝑁𝑁(𝜇𝜇0,𝜎𝜎02),𝜎𝜎𝑖𝑖2~𝐼𝐼𝐼𝐼(𝛼𝛼0,𝛽𝛽0)   2

where m0 and s2
0 are the mean and variance in the normal density, and a0 and b0 are the 

shape and scale hyperparameters of the inverse gamma density. To ensure stationarity 
in each segment, the following priors are assumed for fi, i = 1, 2, ..., k + 1.

𝜙𝜙𝑖𝑖~𝑈𝑈(−1, 1) 𝜙𝜙𝑖𝑖~𝑈𝑈(−1, 1) 

K and 𝜃𝜃𝑘𝑘=(𝜏𝜏1,𝜏𝜏2,⋯,𝜏𝜏𝑘𝑘,𝜇𝜇1,𝜇𝜇2,⋯,𝜇𝜇𝑘𝑘+1,𝜎𝜎12,𝜎𝜎22,⋯,𝜎𝜎𝑘𝑘+12 ,𝜙𝜙1,𝜙𝜙2,⋯,𝜙𝜙𝑘𝑘+1)  Bayesian inference 
is based on the distribution 𝑓𝑓(𝑦𝑦𝑐𝑐 ,𝜃𝜃𝑘𝑘,𝑘𝑘|𝑦𝑦𝑜𝑜) , where 𝑦𝑦𝑜𝑜 ∶= {𝑦𝑦𝑖𝑖|𝑦𝑦𝑖𝑖 ≤ 𝑐𝑐𝑖𝑖 , i = 1, 2,⋯ ,𝑛𝑛}  
and 𝑦𝑦𝑐𝑐: = {𝑐𝑐𝑖𝑖|𝑦𝑦𝑖𝑖 > 𝑐𝑐, 𝑖𝑖 = 1, 2,⋯ ,𝑛𝑛} , which can be factorized by:

 𝑓𝑓(𝑦𝑦𝑐𝑐 ,𝜃𝜃𝑘𝑘 ,𝑘𝑘|𝑦𝑦𝑜𝑜) = 𝑓𝑓(𝑦𝑦𝑐𝑐|𝑦𝑦𝑜𝑜,𝜃𝜃𝑘𝑘,𝑘𝑘)𝑓𝑓(𝜃𝜃𝑘𝑘,𝑘𝑘|𝑦𝑦𝑜𝑜) 

 ∝ 𝑓𝑓(𝑦𝑦𝑐𝑐|𝑦𝑦𝑜𝑜 ,𝜃𝜃𝑘𝑘 ,𝑘𝑘)𝑓𝑓(𝑦𝑦𝑜𝑜|𝜃𝜃𝑘𝑘,𝑘𝑘)𝑓𝑓(𝜃𝜃𝑘𝑘,𝑘𝑘) 

 ∝ 𝑓𝑓(𝑦𝑦|𝜃𝜃𝑘𝑘,𝑘𝑘)𝑓𝑓(𝜃𝜃𝑘𝑘,𝑘𝑘) 
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Reversible jump Markov chain Monte Carlo (RJMCMC) algorithm

Since its introduction, the reversible jump Markov chain Monte Carlo (RJMCMC) by 
Green (1995) has been widely recognized as encompassing many common MCMC 
algorithms, including standard ones. However, what is not often appreciated is that 
RJMCMC is merely a tightening of the terms in the Metropolis‒Hastings algorithm 
to allow consideration of problems involving general state spaces, including those 
comprised of subspaces of different dimensions. This algorithm is based on creating 
an irreducible and aperiodic Markov chain that can alternate jumps among various 
models with parameter spaces of different dimensions while retaining detailed 
balance, ensuring convergence to correct the limiting distribution. As a result, the 
RJMCMC algorithm has been widely used. 
Green (1995) applied this algorithm to Poisson processes with rate x(t), where x(t) 
is constrained to be a step function with an unknown number of steps. Troughton 
and Godsill (1997) addressed the problem of Bayesian inference in autoregressive 
processes where the correct model order was unknown. As noted by many authors, 
this type of problem is particularly appropriate due to its nested structure, which 
facilitates the construction across dimension jumps. Richardson and Green (1997) 
used the RJMCMC algorithm to carry out Bayesian inference for mixture models with 
an unknown number of mixture components.
Typically, the RJMCMC algorithm is used when the sampler target distributions are 
defined over a union of subspaces {Cr} of different nr dimensions. It requires the design 
of different types of moves between the subspaces. These will be combined to form 
what Tierney (1994) calls a hybrid sampler by randomly choosing between available 
moves at each transition to traverse freely across the combined parameter space C. 
The algorithm achieves model space moves by employing a proposal distribution and 
acceptance probability designed to preserve detailed balance and, hence, ensuring 
convergence to the correct invariant distribution. Let M0, M1, ..., Mm be a collection of 
candidate models, and assume that Mr is a model with a vector of unknown parameters 
of size nr , which may vary from model to model. Assume we wish to move from the 
current model Mi to the new model Mj .
A general version of the RJMCMC algorithm is created by proposing a new model Mj with 
rij (qi) probability, moving model Mi to Mj , and generating a vector of random variables u 
from a specified proposal density q(u). A reversible move between models Mi and Mj is 
established by a bijective function g that transforms the parameters 𝑔𝑔: (𝜃𝜃𝑖𝑖,𝒖𝒖) → (𝜃𝜃𝑗𝑗,𝒖𝒖′) 

 

 
and retains the dimensions 𝑑𝑑𝑑𝑑𝑑𝑑(𝜃𝜃𝑖𝑖) + 𝑑𝑑𝑑𝑑𝑑𝑑(𝒖𝒖) = 𝑑𝑑𝑑𝑑𝑑𝑑(𝜃𝜃𝑗𝑗) + 𝑑𝑑𝑑𝑑𝑑𝑑(𝒖𝒖′) 

 

. The function 
g-1 gives the move to the other direction, where the vectors u and u’ are used to make 
the dimensions of the parameter spaces of Mi and Mj equal. Note that the function g 
and its inverse must be differentiable. The proposed move to model Mj is accepted 
with probability
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𝛼𝛼 = 𝑚𝑚𝑚𝑚𝑚𝑚(1,
𝑓𝑓(𝑀𝑀𝑗𝑗,𝜃𝜃𝑗𝑗|𝑦𝑦)𝑟𝑟𝑗𝑗𝑗𝑗(𝜃𝜃𝑗𝑗)𝑞𝑞 ′(𝒖𝒖 ′)
𝑓𝑓(𝑀𝑀𝑗𝑗,𝜃𝜃𝑗𝑗|𝑦𝑦)𝑟𝑟𝑗𝑗𝑗𝑗(𝜃𝜃𝑗𝑗)𝑞𝑞(𝒖𝒖) |

𝜕𝜕𝜕𝜕(𝜃𝜃𝑗𝑗,𝒖𝒖)
𝜕𝜕(𝜃𝜃𝑗𝑗,𝒖𝒖) |) 

 
where q(u´) is the proposal density independent of qj (dimension mj) and |.| is the 
Jacobian determinant. If the move is not accepted, stay in model Mi with parameter 
vector qi .

In the inverse direction, the move from Mj to Mi has an acceptance probability a´ and 
is given by:

𝛼𝛼′ = 𝑚𝑚𝑚𝑚𝑚𝑚 (1,
𝑓𝑓(𝑀𝑀𝑖𝑖,𝜃𝜃𝑖𝑖|𝑦𝑦)𝑟𝑟𝑖𝑖𝑖𝑖(𝜃𝜃𝑖𝑖)𝑞𝑞(𝒖𝒖)
𝑓𝑓(𝑀𝑀𝑖𝑖,𝜃𝜃𝑖𝑖|𝑦𝑦)𝑟𝑟𝑖𝑖𝑖𝑖(𝜃𝜃𝑖𝑖)𝑞𝑞′(𝒖𝒖′) |

𝜕𝜕𝑔𝑔−1(𝜃𝜃𝑖𝑖,𝒖𝒖)
𝜕𝜕(𝜃𝜃𝑖𝑖,𝒖𝒖′)

|) 

 
The simulation of reversible jumps provides a sample of values among a set of statistical 
models based on the probability of each of these models; for example, the Markov chain 
generated by a reversible jump algorithm will move between the different models that 
are considered to describe the data, allowing the chain to stay longer in those models 
that better describe them. As noted by Green (1995), the RJMCMC algorithm usually 
consists of different types of moves that change the state of the Markov chain from one 
model to another. 
The Markov chain has movements that occur across each model visited by the 
simulation process. These movements are known as within-model moves and are 
carried out by the Gibbs sampler and the Metropolis algorithm. The other type of 
move involves a change in the dimension of the parameter spaces and is known as 
between-models moves. To achieve this, a vector of random variables u is generated 
from a specified proposal density g(u). The proposed new state is then given by g 
(qi, u) = (qj, u’), where g and its inverse are differentiable, and finally, the acceptance 
probability is calculated.
In the implementation of the RJMCMC algorithm, several difficulties are often 
encountered, particularly in making the chain jump from one model to another. There 
are two choices to be made when constructing moves between models of different 
dimensions: the proposal density and the bijective function g. To design more efficient 
problems, it has become standard practice to tune proposals. Tuning is the process 
of performing several short runs of an RJMCMC algorithm, each time changing 
certain aspects of a proposal. The specification associated with the run that maximizes 
acceptance rates may then be chosen as the one to be used for the main RJMCMC 
analysis.
There are several suggestions on how to select a proposal density; for example, Brooks 
et al. (2003) introduced a framework for selecting an efficient proposal density q for the 
implementation of the RJMCMC algorithm and then building a bijective function g.
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Estimation of the number and locations of change points
To implement the RJMCMC algorithm for our change-points problem and censored 
observations, four move types are proposed: move Type 1: generate a new change point; 
move Type 2: eliminate one change point; move Type 3: update the autoregressive 
parameters; and move Type 4: update the censored observations. In each iteration, 
one move is chosen randomly. Notice that move types 1 and 2 involve a change in 
dimension. A Gibbs sampler is used in move Type 3, and the Park et al. (2007) method 
is used in move Type 4.

Move type 1: Generating a new change point
When a new change point occurs, the model transitions from k to k + 1. Following the 
procedure proposed by Green (1995), a segment is randomly chosen, followed by a 
change point within that segment.
The proposal is to generate u from the standard normal truncated in the interval (-1, 1).

𝑢𝑢 ~ 𝑁𝑁(−1,1)(0, 1) 

 
where a reversible move between a model with k change points and a model with k + 1 
change points is required. This is accomplished by the bijective function g that follows:

𝑔𝑔(𝜏𝜏𝑖𝑖𝑠𝑠 − 𝜏𝜏𝑖𝑖𝑠𝑠−1,𝜇𝜇𝑖𝑖𝑠𝑠 ,𝜎𝜎𝑖𝑖𝑠𝑠
2 ,𝑢𝑢1,𝑢𝑢2, 𝑢𝑢3) = (𝜏𝜏′𝑖𝑖𝑠𝑠 − 𝜏𝜏𝑖𝑖𝑠𝑠−1, 𝜏𝜏𝑖𝑖 − 𝜏𝜏′𝑖𝑖𝑠𝑠 ,𝜇𝜇𝑖𝑖𝑠𝑠,1, 𝜇𝜇𝑖𝑖𝑠𝑠,2,𝜎𝜎𝑖𝑖𝑠𝑠,1

2 ,𝜎𝜎𝑖𝑖𝑠𝑠,2
2 ) 

 
 (𝜏𝜏′𝑖𝑖𝑠𝑠 − 𝜏𝜏𝑖𝑖𝑠𝑠−1)  =  (𝜏𝜏𝑖𝑖 − 𝜏𝜏𝑖𝑖𝑠𝑠−1)𝑢𝑢1 
 
 (𝜏𝜏𝑖𝑖𝑠𝑠 − 𝜏𝜏′𝑖𝑖𝑠𝑠)  =  (𝜏𝜏𝑖𝑖𝑠𝑠 − 𝜏𝜏𝑖𝑖𝑠𝑠−1)(1 − 𝑢𝑢1) 
 

𝜇𝜇𝑖𝑖𝑠𝑠,1  =  𝜇𝜇𝑖𝑖𝑠𝑠 − 𝑢𝑢2 𝜎𝜎𝑖𝑖√
(𝜏𝜏𝑖𝑖𝑠𝑠 − 𝜏𝜏′𝑖𝑖𝑠𝑠)
(𝜏𝜏𝑖𝑖 − 𝜏𝜏𝑖𝑖𝑠𝑠−1) 

 

 𝜇𝜇𝑖𝑖𝑠𝑠,2 = 𝜇𝜇𝑖𝑖𝑠𝑠 − 𝑢𝑢2𝜎𝜎𝑖𝑖√
(𝜏𝜏𝑖𝑖𝑠𝑠 − 𝜏𝜏𝑖𝑖𝑠𝑠−1)

(𝜏𝜏𝑖𝑖 − 𝜏𝜏′𝑖𝑖𝑠𝑠)  

 

 𝜎𝜎𝑖𝑖𝑠𝑠,1
2 = 𝑢𝑢3(1 − 𝑢𝑢22)𝜎𝜎𝑖𝑖2

(𝜏𝜏𝑖𝑖𝑠𝑠 − 𝜏𝜏𝑖𝑖𝑠𝑠−1)
(𝜏𝜏𝑖𝑖𝑠𝑠 − 𝜏𝜏𝑖𝑖𝑠𝑠−1) 

 

𝜎𝜎𝑖𝑖𝑠𝑠,2
2 = (1 − 𝑢𝑢3)(1 − 𝑢𝑢22)𝜎𝜎𝑖𝑖2

(𝜏𝜏𝑖𝑖𝑠𝑠 − 𝜏𝜏𝑖𝑖𝑠𝑠−1)
(𝜏𝜏𝑖𝑖𝑠𝑠 − 𝜏𝜏′𝑖𝑖𝑠𝑠)

 

 

.
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such that dim (u) + dim (qi) = dim (u´) + dim (qj). The function g was used by Richardson 
and Green (1997) to solve the distribution mixture problem. The function g-1 gives the 
move to the other direction.
The probability of acceptance (from k to k + 1) is given by:

𝛼𝛼 = 𝑚𝑚𝑚𝑚𝑚𝑚 (1,
𝑓𝑓(𝑀𝑀𝑗𝑗 ,𝜃𝜃𝑗𝑗|𝑦𝑦)𝑟𝑟𝑗𝑗𝑗𝑗(𝜃𝜃𝑗𝑗)𝑞𝑞′(𝒖𝒖′)
𝑓𝑓(𝑀𝑀𝑗𝑗,𝜃𝜃𝑗𝑗|𝑦𝑦)𝑟𝑟𝑗𝑗𝑗𝑗(𝜃𝜃𝑗𝑗)𝑞𝑞(𝒖𝒖) |

𝜕𝜕𝜕𝜕(𝜃𝜃𝑗𝑗 ,𝒖𝒖)
𝜕𝜕(𝜃𝜃𝑗𝑗 ,𝒖𝒖) |) 

Move type 2: Eliminate a change point
We consider a transition from a model with k change points to another model with k - 1 
change points. To accomplish this, a random change point is selected, and the inverse 
transform g-1 is applied in the previous step. The probability of accepting this move is:

𝛼𝛼′ = 𝑚𝑚𝑚𝑚𝑚𝑚 (1,
f(Mi, θi|y)rij(θi)q(𝐮𝐮)

f(Mj, θj|y)rji(θj)q′(𝐮𝐮′) |
∂g−1(θi,𝐮𝐮)
∂(θj,𝐮𝐮′) |) 

Move type 3: Update the autoregressive parameters using the Gibbs sampler
The vector parameters of the autoregressive model are updated sequentially, and 
these updates are obtained by m, t, and f in the is segment with the ends at the change 
points in tis-1 

and tis 
for each autoregressive segment i = 1, 2, ..., k + 1, using the Gibbs 

sampler algorithm. The conditional densities of mi, fi, and s2
i  are obtained.

Conditional density of m is explained by:

𝑓𝑓(𝜇𝜇|𝜏𝜏,𝜙𝜙,𝜎𝜎2,𝑦𝑦1,𝑦𝑦2,…,𝑦𝑦𝑛𝑛) = 𝑓𝑓(𝜇𝜇, 𝜏𝜏,𝜙𝜙,𝜎𝜎2,𝑦𝑦𝑐𝑐|𝑦𝑦0)
𝑓𝑓(𝜏𝜏,𝜙𝜙,𝜎𝜎2,𝑦𝑦𝑐𝑐|𝑦𝑦0)  

 
 ∝ 𝑓𝑓(𝜇𝜇, 𝜏𝜏,𝜙𝜙,𝜎𝜎2,𝑦𝑦𝑐𝑐,|𝑦𝑦0) 
 
 ∝ 𝑓𝑓(𝑦𝑦𝑐𝑐,𝑦𝑦0|𝜇𝜇, 𝜏𝜏,𝜙𝜙,𝜎𝜎2)𝑓𝑓(𝜇𝜇, 𝜏𝜏,𝜙𝜙,𝜎𝜎2) 
 
= ∏ ∏ 𝑓𝑓(𝑦𝑦𝑗𝑗|𝜇𝜇, 𝜏𝜏,𝜙𝜙,𝜎𝜎2, 𝑦𝑦𝑗𝑗−1)∏ 𝑓𝑓(𝜇𝜇𝑖𝑖|𝜇𝜇0,𝜎𝜎02)𝑘𝑘+1

𝑖𝑖=1
𝜏𝜏𝑖𝑖
𝑗𝑗=𝜏𝜏𝑖𝑖−1+1

𝑘𝑘+1
𝑖𝑖=1  

Then, 

𝑓𝑓 (𝜇𝜇𝑖𝑖𝑠𝑠|𝜏𝜏𝑖𝑖𝑠𝑠 ,𝜙𝜙𝑖𝑖𝑠𝑠 ,𝜎𝜎𝑖𝑖𝑠𝑠2 , 𝑦𝑦𝜏𝜏𝑖𝑖𝑠𝑠−1+1 , … , 𝑦𝑦𝜏𝜏𝑖𝑖𝑠𝑠) = ∏ 𝑓𝑓(𝑦𝑦𝑗𝑗|𝜇𝜇𝑖𝑖𝑠𝑠 , 𝜏𝜏𝑖𝑖𝑠𝑠 ,𝜙𝜙𝑖𝑖𝑠𝑠 ,𝜎𝜎𝑖𝑖𝑠𝑠2 , 𝑦𝑦𝑗𝑗−1)𝑓𝑓(𝜇𝜇𝑖𝑖𝑠𝑠|𝜇𝜇0,𝜎𝜎02)
𝜏𝜏𝑖𝑖𝑠𝑠

𝑗𝑗=𝜏𝜏𝑖𝑖𝑠𝑠−1+1
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by (2)

= 𝑒𝑒𝑒𝑒𝑒𝑒 {−1
2𝜎𝜎𝑖𝑖𝑠𝑠

2 ∑ (𝑦𝑦𝑗𝑗 − 𝜇𝜇𝑖𝑖𝑠𝑠 − 𝜙𝜙𝑖𝑖𝑠𝑠(𝑦𝑦𝑗𝑗−1−𝜇𝜇𝑖𝑖𝑠𝑠))
2

𝜏𝜏𝑖𝑖𝑠𝑠

𝑗𝑗=𝜏𝜏𝑖𝑖𝑠𝑠−1+1

} 𝑒𝑒𝑒𝑒𝑒𝑒 {−1
2𝜎𝜎02

(𝜇𝜇𝑖𝑖𝑠𝑠 − 𝜇𝜇0)
2} 

 

= 𝑒𝑒𝑒𝑒𝑒𝑒 {−1
2𝜎𝜎𝑖𝑖𝑠𝑠

2 ∑ (𝑦𝑦𝑗𝑗 − 𝜙𝜙𝑖𝑖𝑠𝑠𝑦𝑦𝑗𝑗−1 − 𝜇𝜇𝑖𝑖𝑠𝑠(1 − 𝜙𝜙𝑖𝑖𝑠𝑠))
2

𝜏𝜏𝑖𝑖𝑠𝑠

𝑗𝑗=𝜏𝜏𝑖𝑖𝑠𝑠−1+1

− 1
2𝜎𝜎02

(𝜇𝜇𝑖𝑖𝑠𝑠 − 𝜇𝜇0)
2} 

Then

(𝜇𝜇𝑖𝑖𝑠𝑠|𝜏𝜏𝑖𝑖𝑠𝑠 ,𝜙𝜙𝑖𝑖𝑠𝑠 ,𝜎𝜎𝑖𝑖𝑠𝑠
2 ,𝑦𝑦𝜏𝜏𝑖𝑖𝑠𝑠−1+11,, … ,𝑦𝑦𝜏𝜏𝑖𝑖𝑠𝑠)~𝑁𝑁(

𝐴𝐴(1 − 𝜙𝜙𝑖𝑖𝑠𝑠)
2𝜎𝜎02 + 𝜇𝜇0𝜎𝜎𝑖𝑖𝑠𝑠

2

𝐴𝐴�̅�𝑣𝑖𝑖𝑠𝑠(1 − 𝜙𝜙𝑖𝑖𝑠𝑠)
2𝜎𝜎02 + 𝜎𝜎𝑖𝑖𝑠𝑠

2
,

𝜎𝜎02𝜎𝜎𝑖𝑖𝑠𝑠
2

𝐴𝐴(1 − 𝜙𝜙𝑖𝑖𝑠𝑠)
2𝜎𝜎02 + 𝜎𝜎𝑖𝑖𝑠𝑠

2
) 

where  �̅�𝑣𝑖𝑖𝑠𝑠 = 1
𝑛𝑛 ∑ (𝑦𝑦𝑗𝑗 − 𝜙𝜙𝑖𝑖𝑠𝑠𝑦𝑦𝑗𝑗−1)

𝜏𝜏𝑖𝑖𝑠𝑠

𝑗𝑗=𝜏𝜏𝑖𝑖𝑠𝑠−1+1
  

 

 , and 𝐴𝐴 = (𝜏𝜏𝑖𝑖𝑠𝑠 − 𝜏𝜏𝑖𝑖𝑠𝑠−1) 
 

Conditional density of s2 is explained by:

𝑓𝑓(𝜎𝜎2|𝜇𝜇, 𝜏𝜏,𝜙𝜙,𝑦𝑦0) = 𝑓𝑓(𝜇𝜇, 𝜏𝜏,𝜙𝜙,𝜎𝜎2,𝑦𝑦𝑐𝑐|𝑦𝑦0)
𝑓𝑓(𝜏𝜏,𝜙𝜙, 𝜇𝜇,𝑦𝑦𝑐𝑐|𝑦𝑦0)  

 
 ∝ 𝑓𝑓(𝜇𝜇, 𝜏𝜏,𝜙𝜙,𝜎𝜎2, 𝑦𝑦𝑐𝑐|𝑦𝑦0) 
 
 ∝ 𝑓𝑓(𝑦𝑦𝑐𝑐,𝑦𝑦0|𝜇𝜇, 𝜏𝜏,𝜙𝜙,𝜎𝜎2)𝑓𝑓(𝜇𝜇, 𝜏𝜏,𝜙𝜙,𝜎𝜎2) 
 
= ∏ ∏ 𝑓𝑓(𝑦𝑦𝑗𝑗|𝜇𝜇, 𝜏𝜏,𝜙𝜙,𝜎𝜎2, 𝑦𝑦𝑗𝑗−1)∏ 𝑓𝑓(𝜎𝜎𝑖𝑖2|𝛼𝛼,𝛽𝛽)𝑘𝑘+1

𝑖𝑖=1
𝜏𝜏𝑖𝑖
𝑗𝑗=𝜏𝜏𝑖𝑖−1+1

𝑘𝑘+1
𝑖𝑖=1  

Then by (2),
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𝑓𝑓 (𝜎𝜎𝑖𝑖𝑠𝑠
2|𝜇𝜇𝑖𝑖𝑠𝑠 , 𝜏𝜏𝑖𝑖𝑠𝑠−1𝜙𝜙𝑖𝑖𝑠𝑠 ,𝑦𝑦𝜏𝜏𝑖𝑖𝑠𝑠−1+1, … ,𝑦𝑦𝜏𝜏𝑖𝑖𝑠𝑠) = ∏ 𝑓𝑓(𝑦𝑦𝑗𝑗|𝜇𝜇, 𝜏𝜏,𝜙𝜙,𝜎𝜎2,𝑦𝑦𝑗𝑗−1)𝐼𝐼𝐼𝐼(𝜎𝜎𝑖𝑖𝑠𝑠

2|𝛼𝛼,𝛽𝛽)
𝜏𝜏𝑖𝑖𝑠𝑠

𝑗𝑗=𝜏𝜏𝑖𝑖𝑠𝑠−1+1
 

= 𝜎𝜎𝑖𝑖𝑠𝑠(𝜏𝜏𝑖𝑖𝑠𝑠−𝜏𝜏𝑖𝑖𝑠𝑠−1)𝑒𝑒𝑒𝑒𝑒𝑒 {
−1
2𝜎𝜎𝑖𝑖𝑠𝑠

2 ∑ (𝑦𝑦𝑗𝑗 − 𝜇𝜇𝑖𝑖𝑠𝑠 − 𝜙𝜙𝑖𝑖𝑠𝑠(𝑦𝑦𝑗𝑗−1−𝜇𝜇𝑖𝑖𝑠𝑠))
2

𝜏𝜏𝑖𝑖𝑠𝑠

𝑗𝑗=𝜏𝜏𝑖𝑖𝑠𝑠−1+1
} 𝜎𝜎𝑖𝑖𝑠𝑠

−2(𝛼𝛼−1)𝑒𝑒𝑒𝑒𝑒𝑒 {−𝛽𝛽𝜎𝜎𝑖𝑖𝑠𝑠
2 } 

Thus

(𝜎𝜎𝑖𝑖𝑠𝑠2|𝜇𝜇𝑖𝑖𝑠𝑠 , 𝜏𝜏𝑖𝑖𝑠𝑠−1𝜙𝜙𝑖𝑖𝑠𝑠 ,𝑦𝑦𝜏𝜏𝑖𝑖𝑠𝑠−1+1, … , 𝑦𝑦𝜏𝜏𝑖𝑖𝑠𝑠)~𝐼𝐼𝐼𝐼 (0.5𝐴𝐴 + 𝛼𝛼, 0.5 ∑ (𝑦𝑦𝑗𝑗 − 𝜇𝜇𝑖𝑖𝑠𝑠 − 𝜙𝜙𝑖𝑖𝑠𝑠𝐵𝐵2)
𝜏𝜏𝑖𝑖𝑠𝑠

𝑗𝑗=𝜏𝜏𝑖𝑖𝑠𝑠−1+1
+ 𝛽𝛽) 

where 

𝐴𝐴 = (𝜏𝜏𝑖𝑖𝑠𝑠 − 𝜏𝜏𝑖𝑖𝑠𝑠−1)  
 
𝐵𝐵 = (𝑦𝑦𝑗𝑗−1−𝜇𝜇𝑖𝑖𝑠𝑠) 

Finally, conditional density of f is explained by:

𝑓𝑓(𝜙𝜙|𝜇𝜇, 𝜏𝜏,𝜎𝜎2,𝑦𝑦1,𝑦𝑦2,…,𝑦𝑦𝑛𝑛) = 𝑓𝑓(𝜇𝜇, 𝜏𝜏,𝜙𝜙,𝜎𝜎2,𝑦𝑦𝑐𝑐,|𝑦𝑦0)
𝑓𝑓(𝜇𝜇,𝜙𝜙,𝜎𝜎2,𝑦𝑦𝑐𝑐,|𝑦𝑦0)

 

 
 ∝ 𝑓𝑓(𝜇𝜇, 𝜏𝜏,𝜙𝜙,𝜎𝜎2,𝑦𝑦𝑐𝑐,|𝑦𝑦0) 
 
 ∝ 𝑓𝑓(𝑦𝑦𝑐𝑐,𝑦𝑦0|𝜇𝜇, 𝜏𝜏,𝜙𝜙,𝜎𝜎2)𝑓𝑓(𝜇𝜇, 𝜏𝜏,𝜙𝜙,𝜎𝜎2) 
 
 =∏ ∏ 𝑓𝑓(𝑦𝑦𝑗𝑗|𝜇𝜇, 𝜏𝜏,𝜙𝜙,𝜎𝜎2, 𝑦𝑦𝑗𝑗−1)∏ 𝑓𝑓(𝜙𝜙)𝑘𝑘+1

𝑖𝑖=1
𝜏𝜏𝑖𝑖
𝑗𝑗=𝜏𝜏𝑖𝑖−1+1

𝑘𝑘+1
𝑖𝑖=1  

 

Since we previously assumed that  fi ~ U (-1, 1),
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𝑓𝑓 (𝜙𝜙𝑖𝑖𝑠𝑠|𝜇𝜇𝑖𝑖𝑠𝑠 , 𝜏𝜏𝑖𝑖𝑠𝑠 ,𝜎𝜎𝑖𝑖𝑠𝑠
2 ,𝑦𝑦𝜏𝜏𝑖𝑖𝑠𝑠−1+1, … ,𝑦𝑦𝜏𝜏𝑖𝑖𝑠𝑠 ,𝑘𝑘)

∝ 𝜎𝜎𝑖𝑖𝑠𝑠
−(𝜏𝜏𝑖𝑖𝑠𝑠−𝜏𝜏𝑖𝑖𝑠𝑠−1)𝑒𝑒𝑒𝑒𝑒𝑒 {−1

2𝜎𝜎𝑖𝑖𝑠𝑠
2 ∑ (𝑦𝑦𝑗𝑗 − 𝜇𝜇𝑖𝑖𝑠𝑠 − 𝜙𝜙𝑖𝑖𝑠𝑠(𝑦𝑦𝑗𝑗−1−𝜇𝜇𝑖𝑖𝑠𝑠))

2
𝜏𝜏𝑖𝑖𝑠𝑠

𝑗𝑗=𝜏𝜏𝑖𝑖𝑠𝑠−1+1
}1

2 

 ∝  𝑒𝑒𝑒𝑒𝑒𝑒 {−1
2𝜎𝜎𝑖𝑖𝑠𝑠

2 ∑ (𝑦𝑦𝑗𝑗−1 − 𝜇𝜇𝑖𝑖𝑠𝑠) (𝜙𝜙𝑖𝑖𝑠𝑠 −
(𝑦𝑦𝑗𝑗−𝜇𝜇𝑖𝑖𝑠𝑠)

(𝑦𝑦𝑗𝑗−1 − 𝜇𝜇𝑖𝑖𝑠𝑠)
)
2𝜏𝜏𝑖𝑖𝑠𝑠

𝑗𝑗=𝜏𝜏𝑖𝑖𝑠𝑠−1+1
} 

 
Finally,

 (𝜙𝜙𝑖𝑖𝑠𝑠|𝜇𝜇𝑖𝑖𝑠𝑠 , 𝜏𝜏𝑖𝑖𝑠𝑠 ,𝜎𝜎𝑖𝑖𝑠𝑠2 , 𝑦𝑦𝜏𝜏𝑖𝑖𝑠𝑠−1+1, … , 𝑦𝑦𝜏𝜏𝑖𝑖𝑠𝑠 , 𝑘𝑘)~𝑁𝑁(
∑ (𝑦𝑦𝑗𝑗−1 − 𝜇𝜇𝑖𝑖𝑠𝑠)(𝑦𝑦𝑗𝑗−𝜇𝜇𝑖𝑖𝑠𝑠)
𝜏𝜏𝑖𝑖𝑠𝑠
𝑗𝑗=𝜏𝜏𝑖𝑖𝑠𝑠−1+1

∑ (𝑦𝑦𝑗𝑗−1 − 𝜇𝜇𝑖𝑖𝑠𝑠)
𝜏𝜏𝑖𝑖𝑠𝑠
𝑗𝑗=𝜏𝜏𝑖𝑖𝑠𝑠−1+1

,
𝜎𝜎𝑖𝑖𝑠𝑠2

∑ (𝑦𝑦𝑗𝑗−1 − 𝜇𝜇𝑖𝑖𝑠𝑠)
𝜏𝜏𝑖𝑖𝑠𝑠
𝑗𝑗=𝜏𝜏𝑖𝑖𝑠𝑠−1+1

) 

Move type 4: Data augmentation
This is solved by using the method proposed by Park et al. (2007), which consists 
of imputing the censored values with a random vector from a multivariate normal 
distribution given the observed part.
Consider the time series y1, y2, ..., yn, where yi is observed or censored to the right and 
𝑦𝑦𝑜𝑜={𝑦𝑦𝑖𝑖|𝑦𝑦𝑖𝑖 ≤ 𝑐𝑐𝑖𝑖, 𝑖𝑖 =  1, 2,⋯ ,𝑛𝑛}, 𝑦𝑦𝑐𝑐={𝑐𝑐𝑖𝑖|𝑦𝑦𝑖𝑖 > 𝑐𝑐𝑖𝑖, 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛} 
 

. The basic idea is 
to replace Xc by sampling values from the conditional distribution 𝑓𝑓(𝑌𝑌𝑐𝑐|𝑌𝑌𝑜𝑜,𝜃𝜃𝑘𝑘,𝑘𝑘) 

 
 of 

Yc given by Anderson (2003):

𝑦𝑦𝑐𝑐|𝑦𝑦𝑜𝑜 ,𝜃𝜃𝑘𝑘 ,𝑘𝑘~𝑁𝑁𝑇𝑇(𝜇𝜇𝑐𝑐𝑜𝑜 + 𝛴𝛴𝑐𝑐𝑜𝑜𝑜𝑜 (𝛴𝛴𝑜𝑜𝑜𝑜𝑜𝑜 )−1(𝑦𝑦𝑜𝑜 − 𝜇𝜇𝑜𝑜𝑜𝑜),𝛴𝛴𝑐𝑐𝑐𝑐𝑜𝑜 − 𝛴𝛴𝑐𝑐𝑜𝑜𝑜𝑜 (𝛴𝛴𝑜𝑜𝑜𝑜𝑜𝑜 )−1𝛴𝛴𝑜𝑜𝑐𝑐𝑜𝑜 ) 

where 𝛴𝛴𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑃𝑃𝑜𝑜 𝛴𝛴 𝑃𝑃𝑜𝑜𝑡𝑡 , Σ𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑃𝑃𝑜𝑜 𝛴𝛴 𝑃𝑃𝑜𝑜𝑡𝑡, Σ𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑃𝑃𝑜𝑜 𝛴𝛴 𝑃𝑃𝑜𝑜𝑡𝑡 
 

, and  Σ𝑐𝑐𝑐𝑐𝑜𝑜 = 𝑃𝑃𝑐𝑐 𝛴𝛴 𝑃𝑃𝑐𝑐𝑡𝑡 
 

       (3)

Here, P is selected such that 𝑃𝑃𝑃𝑃=(𝑃𝑃𝑐𝑐,𝑃𝑃𝑜𝑜)𝑡𝑡, 𝑃𝑃𝑜𝑜 
 

, and Pc are defined by the permutation 

𝑃𝑃 = (𝑃𝑃𝑜𝑜 ,𝑃𝑃𝑐𝑐)𝑡𝑡 
 

𝑃𝑃𝑜𝑜,𝑘𝑘𝑘𝑘 = {
1, 𝑦𝑦𝑘𝑘 = 𝑦𝑦𝑜𝑜 𝑘𝑘 = 1,2, … ,𝑛𝑛.
0, 𝑦𝑦𝑘𝑘 ≠ 𝑦𝑦𝑜𝑜 𝑗𝑗 = 1,2, … ,𝑛𝑛.  

 

𝑃𝑃𝑐𝑐,𝑖𝑖𝑘𝑘 = {
1, 𝑦𝑦𝑘𝑘 = 𝑦𝑦𝑐𝑐 𝑖𝑖 = 1,2, … , 𝑛𝑛𝑐𝑐.
0, 𝑦𝑦𝑘𝑘 ≠ 𝑦𝑦𝑐𝑐  𝑗𝑗 = 1,2, … ,𝑛𝑛.  

The vectors Xc and Xo are obtained as follows:
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𝑿𝑿𝒐𝒐 = {𝑦𝑦𝑘𝑘, 𝑦𝑦𝑘𝑘 ≤ 𝑐𝑐𝑘𝑘 𝑘𝑘 = 1,2, … ,𝑛𝑛.
0, 𝑦𝑦𝑘𝑘 > 𝑐𝑐𝑡𝑡 𝑘𝑘 = 1,2, … ,𝑛𝑛.  

 

𝑿𝑿𝒄𝒄 = {𝑐𝑐𝑡𝑡, 𝑦𝑦𝑖𝑖 > 𝑐𝑐𝑖𝑖 𝑖𝑖 = 1,2, … ,𝑛𝑛.
0, 𝑦𝑦𝑖𝑖 ≤ 𝑐𝑐𝑖𝑖 𝑖𝑖 = 1,2, … ,𝑛𝑛.  

 (4)

Applying the permutation matrix P to the observed data 𝑿𝑿 = (𝑋𝑋1,⋯ ,𝑋𝑋𝑛𝑛)𝑡𝑡 
 

, we 
obtain 𝑃𝑃𝑃𝑃 = (𝑿𝑿𝒄𝒄,𝑿𝑿𝒐𝒐)𝑡𝑡 =𝑑𝑑 (𝑿𝑿𝒄𝒄,𝒀𝒀𝒐𝒐)𝑡𝑡  

 

.

The Park et al. (2007) algorithm, used to simulate censored observations, is built on the 
permutation matrices Po and Pc and the vectors Xo and Xc by means of the expressions 
given in (3) and (4), respectively. The initial values for �̂�𝜇0,  ϕ̂0 

 

, and �̂�𝜎02 

 

 are obtained to 
calculate the mean and the covariance matrix:

𝜇𝜇(0) = �̂�𝜇0𝟏𝟏𝒏𝒏  
 

 and Σ𝑖𝑖𝑖𝑖
(0) = �̂�𝜎02

(1 − ϕ̂0
2)

ϕ̂0
|𝑖𝑖−𝑖𝑖|, 𝑖𝑖, 𝑗𝑗 = 1,2, … ,𝑛𝑛 

 

where 𝛴𝛴𝑜𝑜𝑜𝑜𝑜𝑜 , 𝛴𝛴𝑜𝑜𝑜𝑜𝑜𝑜 , 𝛴𝛴𝑜𝑜𝑜𝑜𝑜𝑜 , 

 

 and 𝛴𝛴𝑐𝑐𝑐𝑐𝑜𝑜  

 

 are obtained by using equation (3).

To simulate the censored values:

𝒚𝒚𝒄𝒄~𝑁𝑁𝑇𝑇(𝜇𝜇𝑐𝑐
(𝑜𝑜) + 𝛴𝛴𝑐𝑐𝑜𝑜

(𝑜𝑜)(𝛴𝛴𝑜𝑜𝑜𝑜
(𝑜𝑜))−1(𝒚𝒚𝑜𝑜 − 𝜇𝜇𝑜𝑜

(𝑜𝑜)),𝛴𝛴𝑐𝑐𝑐𝑐
(𝑜𝑜) − 𝛴𝛴𝑐𝑐𝑜𝑜

(𝑜𝑜)(𝛴𝛴𝑜𝑜𝑜𝑜
(𝑜𝑜))−1𝛴𝛴𝑜𝑜𝑐𝑐

(𝑜𝑜)) 

 
To obtain the vector of complete observations:

𝒚𝒚 = 𝑃𝑃−1(𝒚𝒚𝒄𝒄,𝒚𝒚𝒐𝒐)𝑡𝑡 

 

, where 𝑃𝑃=(𝑃𝑃𝑜𝑜 ,𝑃𝑃𝑐𝑐)𝑡𝑡  

 Finally, m, f, and s2 are estimated.

Convergence
To monitor the convergence of a reversible jump Markov chain Monte Carlo, multiple 
chains of the same length but with different starting points are generated and the 
moment when the chains forget the starting points is checked. There are several 
methods for comparing parallel chains.
The Castelloe (1999) method to monitor convergence in a Markov chain Monte Carlo 
with reversible jumps is suitable in situations where the different parameter spaces of 
the models are indexed by some parameter in the chain. It entails monitoring various 
sources of variation, including variations in the chains, interactions between model 
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chains, and significant differences in the frequencies of model visits from one chain 
to another. Any of these conditions may indicate that the chains no longer come from 
the same stationary distribution and that they have not reached convergence to the 
stationary distribution.
Let  q1, q2, ... qp , be the parameters, assuming that there are C parallel Markov chains, 
each with a length of qb, with 𝜃𝜃𝑖𝑖

(𝑗𝑗), 𝑖𝑖 = 1, 2, … ,𝐶𝐶, 𝑗𝑗 = 𝑞𝑞𝑞𝑞 + 1, 𝑞𝑞𝑞𝑞 + 2, … 2𝑞𝑞𝑞𝑞, 
 

 for some 
q and a base size of b. The notation used for the implementation of the convergence 
assessment is:

𝑅𝑅∙𝑚𝑚 = ∑𝑅𝑅𝑐𝑐𝑚𝑚
𝐶𝐶

𝑐𝑐=1
 

 

�̅�𝜃𝑐𝑐𝑚𝑚∙ = 1
𝑅𝑅𝑐𝑐𝑚𝑚

∑𝜃𝜃𝑐𝑐𝑚𝑚𝑟𝑟
𝑅𝑅𝑐𝑐𝑐𝑐

𝑟𝑟=1
 

 

�̅�𝜃𝑐𝑐∙∙ = 1
𝑇𝑇∑𝜃𝜃𝑐𝑐𝑚𝑚𝑟𝑟
𝑅𝑅𝑐𝑐𝑐𝑐

𝑟𝑟=1
  

 

�̅�𝜃∙𝑚𝑚∙ = 1
𝑅𝑅∙𝑚𝑚

∑∑𝜃𝜃𝑐𝑐𝑚𝑚𝑟𝑟  
𝑅𝑅𝑐𝑐𝑐𝑐

𝑟𝑟=1

𝐶𝐶

𝑐𝑐=1
 

 

�̅�𝜃∙∙∙ = 1
𝐶𝐶𝑇𝑇∑∑∑𝜃𝜃𝑐𝑐𝑚𝑚𝑟𝑟

𝑅𝑅𝑐𝑐𝑐𝑐

𝑟𝑟=1

𝑀𝑀

𝑚𝑚=1

𝐶𝐶

𝑐𝑐=1
 

 

where q refers to the parameter vector with the same interpretation in the models; C is 
the number of chains; t is the chain size; M is the number of different models visited 
by the chain; q

r 
cm  is the value of q for the rth occurrence of the model m in the chain C; 

and Rcm is the number of times that the model m appears in the chain C.

The Castelloe (1999) method to monitor convergence in RJMCMC is based on the 
estimates of the following variation sources:

 
 𝑉𝑉 = 1

𝐶𝐶𝐶𝐶 − 1 ∑ ∑∑(𝜃𝜃𝑐𝑐𝑐𝑐𝑟𝑟 − �̅�𝜃∙∙∙ )2
𝑅𝑅𝑐𝑐𝑐𝑐

𝑟𝑟=1

𝑀𝑀

𝑐𝑐=1

𝐶𝐶

𝑐𝑐𝑐𝑐=1
, 

 

𝑊𝑊𝑐𝑐 = 1
𝐶𝐶(𝐶𝐶 − 1)∑∑∑(𝜃𝜃𝑐𝑐𝑐𝑐𝑟𝑟 − �̅�𝜃𝑐𝑐∙∙ )2,

𝑅𝑅𝑐𝑐𝑐𝑐

𝑟𝑟=1

𝑀𝑀

𝑐𝑐=1

𝐶𝐶

𝑐𝑐=1
 

 

𝑊𝑊𝑐𝑐 = 1
𝐶𝐶(𝐶𝐶 −𝑀𝑀)∑∑∑(𝜃𝜃𝑐𝑐𝑐𝑐𝑟𝑟 − �̅�𝜃∙𝑐𝑐∙ )2,

𝑅𝑅𝑐𝑐𝑐𝑐

𝑟𝑟=1

𝑀𝑀

𝑐𝑐=1

𝐶𝐶

𝑐𝑐=1
 

 

𝑊𝑊𝑐𝑐𝑊𝑊𝑐𝑐 = 1
𝐶𝐶(𝐶𝐶 −𝑀𝑀)∑∑∑(𝜃𝜃𝑐𝑐𝑐𝑐𝑟𝑟 − �̅�𝜃𝑐𝑐𝑐𝑐∙ )2

𝑅𝑅𝑐𝑐𝑐𝑐

𝑟𝑟=1

𝑀𝑀

𝑐𝑐=1

𝐶𝐶

𝑐𝑐=1
, 
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𝑉𝑉 = 1
𝐶𝐶𝐶𝐶 − 1 ∑ ∑∑(𝜃𝜃𝑐𝑐𝑐𝑐𝑟𝑟 − �̅�𝜃∙∙∙ )2

𝑅𝑅𝑐𝑐𝑐𝑐

𝑟𝑟=1

𝑀𝑀

𝑐𝑐=1

𝐶𝐶

𝑐𝑐𝑐𝑐=1
, 

 

𝑊𝑊𝑐𝑐 = 1
𝐶𝐶(𝐶𝐶 − 1)∑∑∑(𝜃𝜃𝑐𝑐𝑐𝑐𝑟𝑟 − �̅�𝜃𝑐𝑐∙∙ )2,

𝑅𝑅𝑐𝑐𝑐𝑐

𝑟𝑟=1

𝑀𝑀

𝑐𝑐=1

𝐶𝐶

𝑐𝑐=1
 

 

𝑊𝑊𝑐𝑐 = 1
𝐶𝐶(𝐶𝐶 −𝑀𝑀)∑∑∑(𝜃𝜃𝑐𝑐𝑐𝑐𝑟𝑟 − �̅�𝜃∙𝑐𝑐∙ )2,

𝑅𝑅𝑐𝑐𝑐𝑐

𝑟𝑟=1

𝑀𝑀

𝑐𝑐=1

𝐶𝐶

𝑐𝑐=1
 

 

𝑊𝑊𝑐𝑐𝑊𝑊𝑐𝑐 = 1
𝐶𝐶(𝐶𝐶 −𝑀𝑀)∑∑∑(𝜃𝜃𝑐𝑐𝑐𝑐𝑟𝑟 − �̅�𝜃𝑐𝑐𝑐𝑐∙ )2

𝑅𝑅𝑐𝑐𝑐𝑐

𝑟𝑟=1

𝑀𝑀

𝑐𝑐=1

𝐶𝐶

𝑐𝑐=1
, 

 

where V is the total variation, Wc is the variation within the chains, Wm is the variation 

within the models, and Wm Wc  is the variation between the chains-models. The 

statistics for the convergence assessment are: 𝑅𝑅1 = 𝑉𝑉
𝑊𝑊𝑐𝑐

 

 

  and 𝑅𝑅2 = 𝑊𝑊𝑚𝑚
𝑊𝑊𝑚𝑚𝑊𝑊𝑐𝑐

 

 

. If the 

chains converge, then the estimates of V and Wc are similar, as are the estimations of 
Wm and Wm Wc. Values higher than 1 for R1 and R2 indicate convergence.

RESULTS AND DISCUSSION
In this section, the model is exemplified using a simulated dataset with 600 observations, 
change points at t1 = 200 and t1 = 400 and the parameters of the three AR(1) segments m 
= (12, 12, 12), s2 = (3, 1.5, 3) and f = (0.5, 0.79, 0.5). The process can be written as:

𝑌𝑌𝑡𝑡 = {
12 + 0.50(𝑌𝑌𝑡𝑡−1 − 12) + 𝜀𝜀𝑡𝑡, 1 ≤ 𝑡𝑡 ≤ 200

12 + 0.79(𝑌𝑌𝑡𝑡−1 − 12) + 𝜀𝜀𝑡𝑡, 201 ≤ 𝑡𝑡 ≤ 400
12 − 0.50(𝑌𝑌𝑡𝑡−1 − 12) + 𝜀𝜀𝑡𝑡, 401 ≤ 𝑡𝑡 ≤ 600

 

Three levels of censoring were considered: 10, 40, and 0 % (Figure 1). The RJMCMC 
algorithm generated two chains of 50 000 iterations each. The first 10 000 iterations 
were removed, which correspond to the burning period, and the remaining were used 
to obtain the Bayesian estimates for the model parameters. With 50 000 iterations, the 
statistics R1 and R2 were always greater than one. According to Castelloe (1999), the 
chains converged to their statio.
Regarding the values of the parameters and their estimates (Table 1), the estimated 
point values and their standard deviations were obtained by using the mean of the 
subsequent distribution. The estimates are based on the path of the RJMCMC for 
which k = 2. The estimations of the number of change points and their localizations 
have little bias. 
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A B

C

Figure 1. Process simulation dataset with 600 
observations, change points at t1 = 200  and t2 
= 400, and parameters m = (12, 12, 12), s2 = (3, 
1.5, 3), and f = (0.5, 0.79, 0.5). A: 0 % censored; 
B: 10 % censored; C: 40 % censored.

Table 1. Simulation parameter and estimation results.

Censoring

Parameters True
Value

10 %
Estimated ± SD

40 %
Estimated ± SD

0 %
Estimated ± SD

t1 200   203 ± 37.80   199 ± 41.38   209 ± 41.24
t1 400   400 ± 15.09    398 ± 12.47   391 ± 13.01
µ1 12 12.19 ± 0.17 11.69 ± 0.12 12.28 ± 0.21
µ2 12 12.18 ± 0.37 11.76 ± 0.27 12.22 ± 0.41
µ3 12 11.98 ± 0.06 11.47 ± 0.06 12.10 ± 0.10
σ1 1.73 1.36 ± 0.16 1.02 ± 0.09 1.58 ± 0.18
σ2 1.22 1.01 ± 0.15 0.67 ± 0.1 1.21 ± 0.20
σ3 1.73 1.37 ± 0.18 1.20 ± 0.12 1.60 ± 0.21
Φ1 0.50 0.41 ± 0.06 0.34 ± 0.079 0.44 ± 0.06
Φ2 0.79 0.77 ± 0.12 0.76 ± 0.137 0.77 ± 0.15
Φ3 -0.50 -0.50 ± 0.05 -0.35 ± 0.059 -0.52 ± 0.05
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The histograms obtained from samples from the posterior distribution for the number 
of change points (Figure 2) show the value with highest probability is k=2. Thus, the 
estimated number of change points is 2.

A

Figure 2. Posterior distribution of the number of 
change points. A: 0 % censored; B: 10 % censored; 
C: 40 % censored.

B

C

The histograms obtained from samples from the posterior distribution for the locations 
of the change points (Figure 3) are shown (conditioned on the value k=2). 
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CONCLUSIONS
This paper proposes a Bayesian model for a time series with structural or parameter 
changes that may include censoring in its observations. The number of change points 
and their positions were assumed to be unknown. In each segment, autoregressive 
processes of order one were assumed. Except for the autoregressive coefficients, 
initial conjugated distributions were used to calculate the means and variances of 
each segment. Classic Markov chain Monte Carlo methods cannot be directly used to 
analyze the proposed Bayesian model. The reversible jump Markov chain Monte Carlo 
algorithm is a generalization of the MCMC techniques in which the parametric space 
can change between iterations. It is used to obtain a sample of the final distribution of 
change points and their localizations. The numerical example shows that the estimates 
of the number of change points and their localizations have little bias. Additionally, 
the estimates are robust to the percentage of censoring.

Figure 3. Posterior distribution of the change 
point locations. A: 0 % censored; B: 10 % 
censored; C: 40 % censored.

A B

C



Agrociencia 2024. DOI: https://doi.org/10.47163/agrociencia.v58i1.2856
Scientific article 17

REFERENCES
Anderson TW. 2003. An introduction to multivariate statistical analysis (Third edition). John 

Wiley and Sons: Hoboken, NJ, USA. 457 p.
Barbieri MM, O’Hagan A. 1996. A reversible jump MCMC sampler for Bayesian analysis of 

ARMA time series. Technical report. Dipartimento di Statistica, Probabilità e Statistica 
Applicata, Università La Sapienza: Rome, Italy.

Brooks SP, Giudic P, Roberts GO. 2003. Efficient construction of reversible jump Markov 
chain Monte Carlo proposal distributions. Journal of the Royal Statistical Society. Series B 
Statistical Methodology 65 (1): 3–39. https://doi.org/10.1111/1467-9868.03711

Castelloe J. 1999. Reversible jump Markov Chain Monte Carlo analysis of spatial Poisson cluster 
processes with bivariate normal displacement. Computing Science and Statistics 31: 306–315.

Chib S. 1986. Estimation and comparison of multiple change-point models. Journal of 
Econometrics 86 (2): 221–241. https://doi.org/10.1016/S0304-4076(97)00115-2

Davis RA, Lee TCM, Rodriguez-Yam GA. 2006. Structural breaks estimation for non-stationary 
time series models. Journal of the American Statistical Association 101 (473): 223–239. https://
doi.org/10.1198/016214505000000745

Gijbels I, Gürler Ü. 2003. Estimation of a change point in a hazard function based on censored data. 
Lifetime Data Analysis 9 (4): 395–411. https://doi.org/10.1023/B:LIDA.0000012424.71723.9d

Giordani P, Khon R. 2008. Efficient Bayesian inference for multiple change-point and mixture 
innovation models. Journal of Business and Economic Statistics 26 (1): 66–77. https://doi.
org/10.1198/073500107000000241

Gombay E, Liu S. 2000. A nonparametric nest for change in randomly censored data. The 
Canadian Journal of Statistics 28 (1): 113–121. https://doi.org/10.2307/3315885

Green P. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model 
determination. Biometrika 82 (4): 711–732. https://doi.org/10.2307/2337340

Hušková M, Neuhaus G. 2004. Change point analysis for censored data. Journal of Statistical 
Planning and Inference 126 (1): 207–223. https://doi.org/10.1016/j.jspi.2003.07.018

Lavielle M, Teyssière G. 2006. Detection of multiple change points in multivariate time series. 
Lithuanian Mathematical Journal 46 (3): 287–306. https://doi.org/10.1007/s10986-006-0028-9

Park JW, Genton MG, Ghosh SK. 2007. Censored time series analysis with autoregressive moving 
average models. The Canadian Journal of Statistics 35 (1): 151–168. https://doi.org/10.1002/
cjs.5550350113

Richardson S, Green PJ. 1997. On Bayesian analysis of mixtures with an unknown number of 
components (with discussion). Journal of the Royal Statistical Society: Series B Statistical 
Methodology 59 (4): 731–792. https://doi.org/10.1111/1467-9868.00095

Robinson PM. 1980. Estimation and forecasting for time series containing censored or missing 
observations. In Anderson OD. (ed.), Time Series: Proceedings of the International Conference 
Held at Nottingham University, March 1979. North-Holland: Amsterdam, Netherlands. 

Tierney L. 1994. Markov Chains for exploring posterior distributions. The Annals of Statistics 22 
(4): 1701–1728. https://doi.org/10.1214/aos/1176325750.

Troughton PT, Godsill SJ. 1997. A reversible jump sampler for autoregressive time series. In 
Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal 
Processing, ICASSP ’98 (Cat. No.98CH36181). Institute of Electrical and Electronics 
Engineers: Seattle, WA, USA. https://doi.org/10.1109/icassp.1998.681598.

AgrocienciaAgrociencia


