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A B S T R A C T   

Impact of natural phenomena and anthropogenic activities on water quality is closely related with temperature 
increase and global warming. In this study, the effects of climate change scenarios on water quality forecasts 
were assessed through correlations, prediction algorithms, and water quality index (WQI) for tropical reservoirs. 
The expected trends for different water quality parameters were estimated for the 2030–2100 period in asso-
ciation with temperature trends to estimate water quality using historical data from a dam in Mexico. The WQI 
scenarios were obtained using algorithms supported by global models of representative concentration pathways 
(RCPs) adopted by the Intergovernmental Panel on Climate Change (IPCC). The RPCs were used to estimate 
water and air temperature values and extrapolate future WQI values for the water reservoir. The proposed al-
gorithms were validated using historical information collected from 2012 to 2019 and four temperature variation 
intervals from 3.2 to 5.4 ◦C (worst forecast) to 0.9–2.3 ◦C (best forecast) were used for each trajectory using 
0.1 ◦C increases to obtain the trend for each WQI parameter. Variations in the concentration (±30, ±70, and 
+100) of parameters related to anthropogenic activity (e.g., total suspended solids, fecal coliforms, and chemical 
oxygen demand) were simulated to obtain water quality scenarios for future health diagnosis of the reservoir. 
The results projected in the RCP models showed increasing WQI variation for lower temperature values (best 
forecast WQI = 74; worst forecast WQI = 71). This study offers a novel approach that integrates multiparametric 
statistical and WQI to help decision making on sustainable water resources management for tropical reservoirs 
impacted by climate change.   

1. Introduction 

Water quality monitoring and diagnosing surface water bodies is 
useful to assess the impact caused either by natural phenomena and/or 
anthropogenic activities (Geng et al., 2021; Jia et al., 2019; Kumar et al., 
2020; Quevedo-Castro et al., 2019). The use of hydroclimatological and 
water quality variables is required to better understand the effects of 
these stressors on ecosystems and the response of ecosystems to these 
effects (Korkanc et al., 2017; Muñoz-Nájera et al., 2020). The study of 
water bodies over time using physical, chemical, and microbiological 
parameters help to generate a broader overview of the status of and 
conditions in reservoirs (Vasistha and Ganguly, 2020; Bouaroudj et al., 
2019), particularly when productive activities (e.g., industry, 

agriculture, and livestock) are the main point and diffuse pollution 
sources (Okyereh et al., 2019). As the availability of secure water 
sources decreases because of increased human activities, water re-
sources management that accounts for the effects of global warming 
becomes critical (Yaghoubi et al., 2020). 

The increase in surface water contamination observed in recent years 
highlights the need for tools that describe future trends and help with 
forecasting potential variations in water quality (Arab et al., 2018). 
Several studies (Rocha et al., 2019; Saber et al., 2020; Messina et al., 
2020; Me et al., 2018) have suggested the higher regional temperatures 
and frequent/intense precipitation caused by climate change will in-
crease the discharge of suspended solids and nutrient loading to water 
bodies (Imneisi and Aydın, 2016; De la Mora-Orozco et al., 2017). 
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Therefore, studying trends and forecasting water quality variables is 
useful to predict behavior and provide valuable information for surface 
waterbodies management (Antunes et al., 2018). Water quality trends 
can be assessed through their relationship with climatological variables 
such as temperature (Xu et al., 2019; Li et al., 2020), considered playing 
a significant role on water quality (Rocha et al., 2019; Messina et al., 
2020). 

The need for new decision-making tools to predict water quality 
variations as a function of temperature changes as reports of water 
quality degradation increase (Loaiza et al., 2021). Some studies have 
evaluated water quality in tropical regions (Guillen et al., 2021; Tiyasha 
and Yaseen, 2021; Quang et al., 2019; Negri et al., 2020; Grbčić et al., 
2021; Alias et al., 2021) considering climate change-related impacts, 
sediments and nutrients transport (Jayakody, 2014), hydrological cycle 
variation with temperature (Uriarte, 2011), demographic growth 
(Buytaert, 2012), and fecal contamination (Guo et al., 2021a, 2021b, 
2021c). However, only few of these have reported predictive models 
that combine water quality and global climate change models, usually 
for water bodies located in colder environments (Me et al., 2018; 
Majedul et al., 2018). This lack of information is a significant knowledge 
gap highlighting the need for quantifying temperature variation impact 
on water quality for tropical regions (Simonetti et al., 2021; Shil et al., 
2019; Mena-Rivera et al., 2017; Cude, 2001). Furthermore, application 
of such models is difficult when local conditions dynamics and natu-
ral/anthropogenic activities effects are considered for specific cases. 
Therefore, developing algorithms suitable for use in tropical environ-
ments is increasingly needed to predict the behavior of critical water 
quality parameters. 

This study used different temperature intervals from global climate 
change models developed by the Intergovernmental Panel on Climate 
Change (IPCC) related to representative concentration pathway (RCP) to 
project trends and forecast water quality in a tropical climate using a 
reservoir in Mexico as a case study. The application of linear, para-
metric, and partial correlation tools as well as linear and multiple 
regression statistical techniques generated algorithms that were then 
used jointly with the proposed WQI to model water quality based on air 
and water temperature scenarios (Kothari et al., 2021). The study 
applied a proposed WQI as a statistical diagnostic tool for reservoirs 
located in tropical regions. 

2. Materials and methods 

2.1. Study area 

This study used data from Adolfo Lopez Mateos Dam (ALMD) located 
in Sinaloa, Mexico, as the study area. The reservoir is a 113.40 km2 

tropical water body with 4034 hm3 total capacity. The dam is located on 
the Humaya River watershed and operating since 1963, its main 
consumptive water uses are agricultural irrigation and pisciculture 
(Beltrán et al., 2015). Water and air temperature information in degrees 
centigrade (◦C) (from 2012 to 2018) was collected in four sampling sites: 
P1 (− 107.42565, 25.20128), P2 (− 107.39996, 25.16813), P3 
(− 107.3889, 25.10275) and P4 (− 107.39422, 25.1706) (see Fig. 1) 
from “El Varejonal” hydroclimatological station located nearby (CON-
AGUA, 2021). 

2.2. Water quality parameters 

For the four selected sampling sites described in section 2.1, a record 
was compiled of 26 physical, chemical, and microbiological water 
quality parameters: Chlorophyl a (Chl a), UV absorption (UVA), fecal 
coliform (FC), Escherichia coli (E.C.), total organic carbon (TOC), 
biochemical oxygen demand (BOD), chemical oxygen demand (COD), 
ammonia nitrogen (NH3), nitrite (NO2), nitrate (NO3), organic nitrogen 
(ON), total nitrogen (TN), total Kjeldahl nitrogen (TNK), total phos-
phorus (TP), true color (TC), transparency (TRA), pH, electric conduc-
tivity (CON), total dissolved solid (TDS), dissolved oxygen (DO), total 
hardness (TH), orthophosphate (PO4

3− ), total suspended solid (TSS), 
turbidity (TUR), air temperature (AT), and water temperature (WT). 

Water quality data was provided by the National Water Commission, 
Mexico (CONAGUA) from sampling campaigns carried out every six 
months (e.g., rainy, and dry seasons) from 2012 to 2018 at the four 
sampling sites described earlier (e.g., P1, P2, P3, and P4; see Fig. 1). 
Water quality parameters were estimated in agreement with the Stan-
dard Methods in an ISO accredited laboratory (APHA, 2017). 

Water quality parameters were analyzed to obtain forecasts and 
future scenarios through direct and indirect correlations with water 
temperature (WT) and air temperature (AT) using the water quality 
index described elsewhere (Quevedo-Castro et al., 2018) for tropical 
reservoirs. Water quality parameters with a stronger linear correlation 

Fig. 1. ALMD and water quality sampling site’s geographical location.  
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with WT and AT were identified using the Pearson correlation matrix 
and referred to as direct correlation parameters. The parameters that 
presented lower correlation with temperature were classified as indirect. 

2.3. Correlation/association of parameters 

Linear correlation matrices, nonparametric correlations, and partial 
correlations were constructed to evaluate the correlations/associations 
between 11 direct water quality parameters (FC, TSS, pH, DO, COD, ON, 
NH3, NO3, TP, PO4

3− and Chl a) and temperature (WT and AT). The 
Pearson’s correlation coefficient analysis was used to identify linear 
correlations between variables, whereas the Spearman rank correlation 
coefficient analysis was used for nonlinear associations forces of water 
quality variables. Spearman’s rho is a non-parametric test to measure 
statistical dependence between the association between two variables. 
Partial correlations were used to identify the predictive strength among 
variables. The analysis was performed using Origin 9.1 software and 
graphics were created with RStudio. The range of Pearson, Spearman, 
and partial forces coefficients estimated was from − 1 to +1 depending 
on the strength of the linear relationship between the variables, with 
0 being the lowest correlation and ±1 being the highest correlation. A 
positive correlation (values from 0 to 1) means one variable increase 
when another increases. A negative correlation (− 1 to 0) means one 
variable increase when another decreases. P-values below 0.05 were 
considered statistically significant with a 95.0% confidence level. 

Once the direct and indirect parameters of the database were iden-
tified as a function of AT and WT, linear regression equations were 
constructed that included the direct and indirect variables as a function 
of the 11 parameters that make up the reservoir WQI. Simple regressions 
were used for cases of parameters with direct correlation to AT and WT. 
Regression analyses were used to estimated relationship between pa-
rameters and correlation/association with AT and WT. R-square and p- 
values were estimated to obtain an algorithm to predict water quality 
scenarios. Once the equations based on the AT and WT for each WQI 
variable were generated, calibration was carried out by substituting 
water quality and AT and WT variables from the database and 
comparing observed concentrations against predicted values. 

2.4. Assessing the effect of global climate models in water quality 

Future projections of water quality variations as a function of tem-
perature were assessed using global temperature models adopted by the 
IPCC that include greenhouse gas concentrations (IPCC, 2018). The IPCC 
suggested four RCP trajectories according to CO2 concentration (in parts 
per million, ppm) and temperature variation ranges used for predictive 
models over the next 100 years. RCP 8.5 ppm represents the highest 
temperature variation, whereas an RCP 2.6 ppm represents the lowest 
temperature variation (Salimi and Scholz, 2021; Guo et al., 2021a, 
2021b, 2021c). The four RCP scenarios used in this study were: (a) 
3.2–5.4 ◦C, RCP 8.5 ppm; (b) 2.0–3.7 ◦C, RCP 6 ppm; (c) 1.7–3.2 ◦C, RCP 
4.5 ppm; and (d) 0.9–2.3 ◦C, RCP 2.6 ppm. Using these temperature 
variation intervals for proposed RCPs, projections of 11 water quality 
parameters for WQI were made. Simulations were performed for 
different RPCs based on WT and AT data. The trend of each water quality 
parameter was obtained as a function of the temperature variation for 
each projected year, which provided trends for each WQI parameter 
over the next 100 years. 

2.5. Water quality index (WQI) 

The WQI was calculated by using Eq. (1) reported previously (Que-
vedo-Castro et al., 2018). 

WQI =
∑i

n=1
SInWn (1)  

where WQI is the water quality index, SIn is the quality function of every 
evaluated water quality parameter, Wn is the relative weight of every 
water quality parameter, and n is the number of water quality param-
eters that make up the system (Quevedo-Castro et al., 2018). Temper-
ature variations and projections obtained for the different RCPs were 
used to simulate WQI calculations. 

2.6. Development of the climate change model 

Results of climate change models developed by the IPCC were 
applied to obtain water quality parameter values and water quality 
trends using Eq. (1). The algorithms were used to obtain the trend of 
each water quality parameter included in the WQI over time as function 
of temperature (AT and WT) variation projections. Once the four RCP 
trajectories (8.5, 6, 4.5 and 2.6 ppm) projection was calculated for 11 
water quality parameters (FC, TSS, pH, DO, COD, ON, NH3, NO3, TP, 
PO4

3− and Chl a) over time (e.g., 2030–2100), future behavior of each 
parameter based on AT and WT was simulated. Then, 11 WQI values 
were calculated (2030–2100) using projected values of every variable in 
relation to RCP trajectory. Simulated WQI values were obtained using 
the proposed algorithms to obtain corresponding values estimated for 
the same study period using RCP simulations (e.g., 2030 to 2100). After 
calculating WQI for the different scenarios, sensitivity of parameters 
attributed to anthropogenic contamination (FC, TSS and COD) was 
tested by varying projected results to simulate normal, pessimistic, and 
optimistic scenarios (±30%, ±70%, and +100%) to assess the effect of 
increased concentrations throughout the reservoir (Sidabutar et al., 
2017; Aslan-Yılmaz et al., 2004). 

Because only average water quality data was available and no point/ 
diffuse contamination sources were identified, simulations of only three 
parameters attributed to anthropogenic contamination sources were 
attempted: fecal coliforms, total suspended solids, and chemical oxygen 
demand. In all these cases, specific increase, and decrease (±30%, 
±70%, and +100%) of every anthropogenic-related parameter was 

Table 1 
Algorithms for predicting water quality scenarios in the ALMD.  

Parameter R- 
square 

P- 
value 

Algorithm 

FC 88.03 0.004 FC = 359.195 + 2.88109*TC + 2.14406* 
TSS + 66.6938*TUR − 7.37351*AT −

7.64135*WT 
TSS 89.84 0.0023 TSS = − 38.9027 + 60.8435*NO3− +

238.327*TP + 2.84123*TUR − 0.506945* 
AT + 1.31766*WT 

pH 86.83 0.0013 pH = 0.579286 + 0.00177434*COD+

0.269885*DO − 0.00759919*TH+ 0.121751* 
AT + 0.0611671*WT 

DO 95.24 0.0005 DO = 24.168 + 0.148525*AT − 0.655006* 
WT 

COD 88.17 0.0015 COD = 113.201 + 4.60857*BOD + 32.4638* 
NH3 + 65.1638*ON − 17.6245*pH +

0.0739097*TH + 1.94107*AT − 2.41093*WT 
ON 88.70 0.0033 ON = − 2.25199 + 0.0148534*AT+

0.0752578*WT 
NH3 92.40 0.0014 NH3 = 0.483305 + 0.0104911*BOD −

0.0428745*ON − 0.00202097*TUR −

0.0151233*AT − 0.00107386*WT 
NO3 99.99 0.0001 NO3 = − 0.00898702 − 0.000187963*TOC+

0.883497*TN − 0.880494*TNK +

0.0000799737*TSS + 0.000461481*AT −

0.000422515*WT + 0.000249538*TC 
TP 93.41 0.0011 TP = − 0.0261668 − 0.00226919*AT +

0.0055921*WT 
PO4

3- 90.91 0.0013 PO4 = 0.414488 + 0.00205479*NO3− +

0.0778848*TP − 0.00927069*AT −

0.0024189*WT 
Chl a 74.78 0.0009 Chl a = 110.301 − 3.22577*TNK − 1.15738* 

TRA − 1.31982*DO − 1.63807*AT −

1.05333*WT  
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tested to evaluate the index sensitivity and predict effects of simulating 
changes by over the study period (e.g., 2030 to 2100). 

2.7. Obtaining algorithms 

Algorithms were created (Table 1) to model 11 WQI parameters 
(Quevedo-Castro et al., 2018) using statistical analysis to identify the 
R-squared and p-value for each model through linear and multiple 
regression. Regression analysis was performed on 26 water quality 
variables in the database to identify those that better represent the 
system through linear mathematical algorithms. Unlike the spatial and 
seasonal evaluations of the water quality of tropical water bodies by 
simulating hydroclimatological data (precipitation and temperature) 
found in the literature (Danladi Bello et al., 2017; Guo et al., 2021a, 
2021b, 2021c; Fang et al., 2021; Jayakody et al., 2014; Delpla et al., 
2009), the algorithm algorithms (Table 1) made it possible to estimate 
the quantitative impact of the temperature variation on each parameter 
compared to the Climate change projections from a proposed water 
quality index for tropical climates. 

3. Results and discussion 

3.1. Algorithm generation 

Algorithms were generated and validated with available historical 
water quality data from the reservoir (2012–2018). Subsequently, WT 
and AT simulations and their effects on water quality were performed 
for all the resulting algorithms. The variation of water quality parame-
ters according to the four RCP temperature intervals was analyzed, 
obtaining forecasts for changes in water quality for every parameter 
from 2018 to 2100. 

The Pearson correlation coefficient was used with data from 26 water 
quality parameters (physical, chemical, and microbiological), including 
AT and WT from 2012 to 2018. Fig. 2 shows the correlations of each pair 

of 26 parameters. The color intensity shows the relationship between 
variables. Blue represents a positive correlation, whereas orange rep-
resents a negative correlation. DO, ON and TP turned out to be the three 
most directly related to correlation and association forces with respect to 
AT and WT. The remaining eight parameters were adjusted by direct (AT 
and WT) and indirect variables, according to data dispersion, using 
alternative variables to build each algorithm using the system; FC (TC, 
TSS and TUR), TSS (NO3, TP and TUR), pH (COD, DO and TH), COD 
(BOD, NH3, ON, pH and TH), NH3 (BOD, ON and TUR), NO3 (TOC, TN, 
NTK, TSS, TC), PO4

3− (NO3 and TP) and Chl a (TNK, TRA and DO) using 
multiple regression, R-square, and p-values to describe their correlation 
with AT and WT (Table 1). 

AT and WT were found less influential than water quality parame-
ters. However, AT and WT were related to some parameters because a 
warmer climate accelerates decomposition rate and nutrient release and 
causes eutrophication (Bouraï et al., 2020). Fecal coliforms showed 
strong positive correlation with TC (0.7), TSS (0.6), and TUR (0.8), 
probably because particulate matter caused by reservoir hydrody-
namics, mineral solubility, and biological activity produced 
adsorption-desorption processes in the aquatic system (Sajjadi et al., 
2017). Total suspended solids were with positive significant correlation 
with NO3 (0.8), FC (0.6), PO4

3− (0.4), and TUR (0.8) (Chapman, 2021) 
(Fig. 2). pH was found influencing TH (− 0.4), TSS (− 0.4) and 
oxygen-related parameters (e.g., DO (0.7) and COD (− 0.1)) some of 
them related to gas solubility (Tripathi et al., 2014). DO, ON, and PO4

3−

were associated with AT (− 0.3, 0.1, − 0.2, respectively) and WT (− 0.4, 
0.2, − 0.1, respectively). COD correlated with BOD (0.5), NH3 (− 0.1), 
ON (− 0.2), pH (− 0.1) and TH (0.1) probably because COD is susceptible 
to oxidation of organic and inorganic materials (Fig. 2). In the case of 
nitrogenous compounds, ON was correlated with pH (0.4), TKN (0.9), 
TN (0.8), and COND (0.5). Ammonia nitrogen was found influenced by 
ON (− 0.3), whereas BOD presented low correlation with turbidity 
(− 0.1). Nitrates showed interaction with TP (0.8), TN (0.3), TNK (− 0.3), 
and TSS (0.8) probably because influence of nitrifying and denitrifying 

Fig. 2. Pearson correlation matrix of water quality parameters.  
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bacteria (Chapman, 2021; Yang et al., 2021; Ni et al., 2018) (Fig. 2). 
Orthophosphate, an essential nutrient for living organisms and limiting 
nutrient for algae growth and primary productivity in eutrophication 
(Chapman, 2021), was found influenced by NO3 (0.3) and TP (0.3). TP 
was correlated with TUR (0.7), NO3 (0.8) and TC (0.7) (Berthe et al., 
2018; Chapman, 2021) probably related with rock weathering and/or 
organic matter decomposition in the reservoir. Fecal coliforms showed 
strong correlation with TUR (0.8), TC (0.7), TP (0.5) and NO3 (0.7) and 
Chl a was correlated with TNK (− 0.4) and DO (− 0.2) (Fig. 2) (Chapman, 
2021) probably due to phytoplankton activity, toxic inhibition, and 
biological response to nutrients presence (Bai et al., 2022). The group of 
variables with the highest correlation corresponds to TUR, TC, FC, TSS 
and NO3 and TP, PO4

3− , NO2, NTK and ON. Anthropogenic activities, 
mainly agriculture, were found impacting nutrient concentration, 
closely related to most of water quality parameters and influencing 

variation in water quality (Atique et al., 2019), COD, TN and TP were 
found significantly affected by agricultural runoff in agreement with 
other studies (Novotny, 2002; Saha et al., 2021). 

3.2. Model calibration 

Water quality behavior was modeled using 11 WQI parameters to 
calibrate predicting algorithms as a function of AT and WT. Fig. 3 shows 
the results for predicted and actual trends. A cubic spline interpolation 
was performed by dividing the input data into a set of fragments fitted to 
each segment with a cubic polynomial for the 11 parameters using the 
Origin Pro 8.5 software application. As shown in Fig. 3, predicted data 
match actual field data well for almost all parameters (particularly FC, 
NO3, and TSS), in agreement with other studies (Salimi and Scholz, 
2021) where future climate scenarios were simulated for the last 30 

Fig. 3. Result calibration for the proposed algorithm.  
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Table 2 
Temperature fluctuations versus RCP.  

RCP variation (◦C) Forecast year Air temperature (◦C) Water temperature (◦C) 

8.5 (3.2–5.4 ◦C) 3.2 2030 38.3 34.7 
3.3 2033 38.4 34.8 
3.4 2036 38.5 34.9 
3.5 2040 38.6 35.0 
3.6 2043 38.7 35.1 
3.7 2046 38.8 35.2 
3.8 2049 38.9 35.3 
3.9 2052 39.0 35.4 
4.0 2055 39.1 35.5 
4.1 2059 39.2 35.6 
4.2 2062 39.3 35.7 
4.3 2065 39.4 35.8 
4.4 2068 39.5 35.9 
4.5 2071 39.6 36.0 
4.6 2075 39.7 36.1 
4.7 2078 39.8 36.2 
4.8 2081 39.9 36.3 
4.9 2084 40.0 36.4 
5.0 2087 40.1 36.5 
5.1 2090 40.2 36.6 
5.2 2094 40.3 36.7 
5.3 2097 40.4 36.8 
5.4 2100 40.6 36.9 

6 (2.0–3.7 ◦C) 2.0 2030 37.2 33.5 
2.1 2034 37.3 33.6 
2.2 2038 37.4 33.7 
2.3 2042 37.5 33.8 
2.4 2046 37.6 33.9 
2.5 2051 37.7 34.0 
2.6 2055 37.8 34.1 
2.7 2059 37.9 34.2 
2.8 2063 38.0 34.3 
2.9 2067 38.1 34.4 
3.0 2071 38.2 34.5 
3.1 2075 38.3 34.6 
3.2 2079 38.4 34.7 
3.3 2083 38.5 34.8 
3.4 2087 38.6 34.9 
3.5 2092 38.7 35.0 
3.6 2096 38.8 35.1 
3.7 2100 38.9 35.2 

4.5 (1.7–3.2 ◦C) 1.7 2030 36.9 33.2 
1.8 2035 37.0 33.3 
1.9 2039 37.1 33.4 
2.0 2044 37.2 33.5 
2.1 2049 37.3 33.6 
2.2 2053 37.4 33.7 
2.3 2058 37.5 33.8 
2.4 2063 37.6 33.9 
2.5 2067 37.7 34.0 
2.6 2072 37.8 34.1 
2.7 2077 37.9 34.2 
2.8 2081 38.0 34.3 
2.9 2086 38.1 34.4 
3.0 2090 38.2 34.5 
3.1 2095 38.3 34.6 
3.2 2100 38.4 34.7 

2.6 (0.9–2.3 ◦C) 0.9 2030 36.1 32.4 
1.0 2035 36.2 32.5 
1.1 2040 36.3 32.6 
1.2 2045 36.4 32.7 
1.3 2050 36.5 32.8 
1.4 2055 36.6 32.9 
1.5 2060 36.7 33.0 
1.6 2065 36.8 33.1 
1.7 2070 36.9 33.2 
1.8 2075 37.0 33.3 
1.9 2080 37.1 33.4 
2.0 2085 37.2 33.5 
2.1 2090 37.3 33.6 
2.2 2095 37.4 33.7 
2.3 2100 37.5 33.8  
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years based on regional climate. RCPs were useful describing tempera-
ture effect on critical water quality parameters and performed better 
than hydroclimatological simulations (Salimi and Scholz, 2021) by 
allowing a diagnosis of future trends over time. 

Model calibration results showed statistical significance (e.g., p <
0.05) and high correlation in predicted values: R-square ranged 74.8%– 
99.9% (Table 1) for all cases rated as significant by other studies 
(Ambiga and Annadurai, 2015; Khatoon et al., 2013; Mustapha and 
Zaharin, 2012). After algorithm validation, forecasts were obtained for 
different WQI parameter, including simulated variations in parameter 
concentrations attributed to anthropogenic activities, to assess future 
water quality scenarios. 

3.3. Temperature variations with global models 

To assess WQI variation with temperature, four different tempera-
ture trajectories were modeled for each RCP until 2100. Table 2 shows 

the results of this assessment. Fig. 4 shows the effect of the different 
RCPs on water quality variables estimated using algorithms proposed in 
this study. As shown, RCP estimation showed an increase in bacterial 
load from 2030 to 2100 ranging from 469 CFU/100 mL (RCP 3.2–5.4 ◦C) 
to 510 CFU/100 mL (RCP 0.9–2.3 ◦C). The highest bacterial load was 
found for RCP 0.9–2.3 ◦C (510 CFU/100 mL), which resulted in pre-
dictions of AT in the range of 36–37 ◦C and WT in the 32–33 ◦C range. 
This trend is probably related to the optimal temperature for coliform 
bacteria growth (37 ◦C) because any temperature value below or above 
37 ◦C will decrease bacterial growth. These results for bacterial load 
differ from other studies (Salimi and Scholz, 2021), which found that 
higher temperatures increased microbial growth and improved nutrient 
removal. As shown in Fig. 4e, DO decreased at higher temperatures, 
averaging 6.5 mg/L for RCP 3.2–5.4 ◦C and 7.9 mg/L for RCP 0.9–2.3 ◦C. 
The model predicted upward variation for pH, which increased 
considerably at higher temperatures, reaching 9.07 for RCP 3.2–5.4 ◦C. 
TSS and NO3 did not show significant variation independently of RCP 

Fig. 4. Effect of different RCPs on water quality estimated using the proposed algorithms.  
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scenarios presenting slight ascending behavior over time, probably 
because of temperature effect on gas solubility, particulate material, 
nutrients, sediments and metabolic rate of aquatic organisms in the 
reservoir, increasing organic matter decomposition which produces in-
crease in turbidity, nutrients and macrophyte growth and algal blooms 
directly related to TSS and nitrogen-related species (Chapman, 2021). 

3.4. Future water quality scenarios 

Several studies have attempted to show climate change impact on 
water quality (Gómez-Martinez et al., 2021; Exley et al., 2021) by 
simulating the effects of changes in hydroclimatological variables (e.g., 
precipitation, temperature) on parameters such as DO, TDS over time 
(Hassanjabbar et al., 2022). In this study, water quality in tropical water 
bodies was quantitatively evaluated to predict future scenarios through 
temperature changes from global climate change models. Fig. 5 shows 
four WQI scenarios obtained for different RCP trajectories: RCP 
3.2–5.4 ◦C (Fig. 5a), RCP 2.0–3.7 ◦C (Fig. 5b), RCP 1.7–3.2 ◦C (Fig. 5c), 
and RCP 0.9–2.3 ◦C (Fig. 5d). A linear WQI trend was observed in all 
variations tested (±30, ±70, +100) as well as in RCP 3.2–5.4 ◦C without 
variation (Fig. 5a). To classify results, the rating scale used was excellent 
(WQI = 91–100), good (WQI = 71–90), medium (WQI = 51–70), poor 
(WQI = 26–50), and very bad (WQI = 0–25) as proposed elsewhere 
(Rajendran and Mansiya, 2015). The WQI showed variations in water 
quality parameters attributed to anthropogenic activities (FC, COD and 
TSS) increasing concentrations to +100, +70, and +30 (Fig. 4). When 
temperature oscillated within 3.2 ◦C and 4.4 ◦C, water quality was found 
medium. When temperature exceeded 4.5 ◦C, WQI went from medium to 
good and for variations − 30 and − 70, water quality was found good. 
Doubling average anthropogenic parameters concentration, WQI was 
significantly affected, moving from 71 (good) to 52 (medium) for the 
worst climate change scenario (Fig. 4). 

For the worst-case scenario (+100), WQI was found without changes 

over time (e.g., 51 for 2030 and 54 for 2100), probably related to critical 
and sensitive parameters such as bacteria (FC) and primary productivity 
(Chl a, ON) in the reservoir. Results also suggest that organic parameters 
are directly related to increased temperature regardless of pollutant load 
tendency (Abdelrady et al., 2019). The best-case scenario was − 30 
(WQI = 73.5) followed by − 70 (WQI = 73.2). No significant difference 
was found for − 30 and − 70 scenarios, probably because, under these 
conditions, pollutant load was at equilibrium with temperature and WQI 
dropped as pollutant load increases over − 30. 

Fig. 5 also shows scenarios with the highest pollutant load (+100 
and + 70) generated the worst WQI results, identifying water quality as 
medium (51–70). On the other hand, scenarios − 70 and − 30 turned out 
generating the highest WQI values rated as good (71–90) (see pink lines 
in Fig. 5). 

To analyze data from a general perspective, average WQI values 
were determined for variations of anthropogenic parameters (Table 3). 
Under normal conditions (e.g., without variations), WQI decreases as 
temperature increases. For all cases (+30, − 30, +70, and − 70), WQI 
was affected at higher temperatures. The proposed methodology aimed 
to offer an alternative for the quantitative water quality measurement in 
tropical reservoirs anywhere in the through implementation of WQI for 
tropical conditions. Because effects of climate change are generated 

Fig. 5. WQI variations as a function of RCP scenarios: (a) 8.5, (b) 6.0, (c) 4.65, and (d) 2.6.  

Table 3 
WQIALMD averages by RCP.  

Average RCP interval 
(2030–2100) 

WQIALMD average anthropogenic variation (2030–2100) 

(normal) (+30) (-30) (+70) (-70) (+100) 

3.2–5.4 ◦C RCP 8.5 71 68 73 60 73 51 
2.0–3.7 ◦C RCP 6.0 72 70 75 62 75 51 
1.7–3.2 ◦C RCP 4.5 73 71 76 63 76 51 
0.9–2.3 ◦C RCP 2.6 74 71 77 63 77 51  
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global, identifying trends and forecasts for temperature impact on water 
quality is a significant effort. Climate change effects occur throughout 
earth’s surface so, including impacts of anthropogenic activities and 
natural phenomena contributes to better managing water resources. 

4. Conclusions 

Through the application of statistical techniques, it was possible to 
generate a methodology to evaluate water quality in tropical reservoirs 
that included physicochemical and microbiological parameters as well 
as the effects of climate change to predict changes in the reservoir based 
on changes in temperature. The following are our main findings:  

• The study provides a perspective on predicting water quality 
behavior of tropical reservoirs and vulnerability of water quality to 
anthropogenic activities in face of temperature variations generated 
by climate change. This offers an interesting overview of future 
trends for decision making.  

• Based on fluctuations and forecasts obtained from the algorithms 
designed using this methodology, the influence of RCP trajectories 
proposed by global models is related to the expected increase in 
temperature in the coming years.  

• Changes in water quality evaluated for the 2030–2100 period using 
the WQI suggested significant effect of high temperatures (WQI = 71 
at 3.2–5.4 ◦C) with lower temperature producing improved WQI 
values (WQI = 74 at 0.9–2.3 ◦C).  

• The application of multiparametric statistical tools, global climate 
change models and water quality indices provided alternatives for 
water quality modeling and predicting scenarios in tropical 
reservoirs.  

• This paper proposes a tool to assess water quality through an index 
proposed for tropical areas sensitive to intrinsic characteristics of 
temperature variations. 
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los principales embalses de Sinaloa. Editorial 672, 2015. ISBN:978-607-9423-41-4. 
http://biblioteca.diputados.gob.mx/janium/bv/cedrssa/lxii/diag_limpes_prinemb_si 
n.pdf. (Accessed 15 March 2021). Accessed.  

Berhe, A.A., Barnes, R.T., Six, J., Marin-Spiotta, E., 2018. Role of soil erosion in 
biogeochemical cycling of essential elements: carbon, nitrogen, and phosphorus. 
Annu. Rev. Earth Planet Sci. 46 (1), 521–548. 

Bouaroudj, S., Menad, A., Bounamous, A., Ali-Khodja, H., Gherib, A., Weigel, D.E., 
Chenchouni, H., 2019. Assessment of water quality at the largest dam in Algeria 
(Beni Haroun Dam) and effects of irrigation on soil characteristics of agricultural 
lands. Chemosphere 219, 76–88. 

Bouraï, L., Logez, M., Laplace-Treyture, C., Argillier, C., 2020. How do eutrophication 
and temperature interact to shape the community structures of phytoplankton and 
fish in lakes? Water 12 (3), 779. 
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