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Abstract

The effort to identify and comprehend potential earthquake-related phenomena shares a common goal: successful earthquake fore-
casting. Advancements in science and technology have made this goal multidisciplinary. Currently, possibly earthquake-related anoma-
lies in the Vertical Total Electron Content (VTEC) of the Earth’s ionosphere are being investigated. Global Navigation Satellite Systems
(GNSS) can be used to calculate this ionospheric parameter. In this research work, GPS VTEC was calculated for periods between the
years 2015 and 2019. The selection of this periods considered both seismically active and non-seismically areas in Mexico. The Mw � 5
earthquakes under study were registered by the National Seismological Service. Moreover, different geomagnetic storm and solar activity
parameters, such as the geomagnetic equatorial Dst index and the F10.7 index, were analyzed. Additionally, the daily average and
monthly mean number of sunspots (R, SSN, respectively) were included as a direct, long-term record of the development of the solar
cycle. To the periods under study different statistical methods were applied, such as Mean-Square Error (MSE) and cross-correlation.
The above aims to apply a machine learning technique capable of classifying between periods with seismic and non-seismic activity.
The features were constructed using statistical data and results from the implemented analysis. Furthermore, Principal Component Anal-
ysis (PCA) was applied to reduce the feature vector dimensions, and accuracy scores were compute using k-fold cross-validation. The
results from the Support Vector Machine (SVM) model indicated an accuracy of 88.9% for the training set, and an accuracy of 80%
was obtained for the test set. One of the limitations of the current study was the sample size. However, the present initial approach
for classifying seismic events from non-seismic periods using SVM demonstrated promising results when considering the indicated
parameters and the days under study.
� 2023 COSPAR. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Controversy over the extent to which seismic precursors
are considered a suitable factor in earthquake forecasting is
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comprehensible, given that earthquakes are random and
highly non-linear natural phenomena. Over the past five
hundred years, more than seven million people have lost
their lives due to earthquakes and many others have wit-
nessed the destruction of their food sources and economies
(Bolt, 1993). In the case of Mexico, its geology reflects that
large part of its territory is subject to enormous stress,
resulting in earthquakes (Bolt, 2001). Mexico is particu-
larly susceptible to the complex interactions between the
North American, Pacific, Cocos, Caribbean, and Rivera
tectonic plates, making the Pacific coast regions of Mexico
a focal point of interest for this study.

Currently, GPS-TEC provides insights into the seismic
preparation zone in the Earth’s ionosphere using radio sig-
nals. Extensive research on ionospheric perturbations likely
associated with earthquakes has been published, and it has
emerged as a reliable parameter to consider in the field of
earthquake forecasting (Ouzounov et al., 2011; Tsai
et al., 2018; Barkat et al., 2018; Shah et al., 2021; Shah
et al., 2022, and references therein). For example,
Sotomayor-Beltran (2019) detected a negative perturbation
in the Vertical Total Electron Content (VTEC) ten days
prior to the Pedernales earthquake in Ecuador
(Mw = 7.8). The study used Global Ionospheric Maps
(GIMs) from the Center for Orbit Determination in Eur-
ope (CODE) to extract the ionospheric parameter, with
reported solar and geomagnetic activity levels character-
ized as quiet. Similarly, Melgarejo-Morales et al. (2020)
analyzed VTEC data derived from GPS during earth-
quakes of Mw � 5.1, revealing that the majority of the
studied earthquakes were preceded by periods of non-
quiet geomagnetic activity. Astafyeva and Heki (2011)
investigated VTEC variations during a period of solar
and geomagnetic quietude, highlighting the challenges in
identifying earthquake precursors due to the alterations
induced by Space Weather. Furthermore, Shah et al.
(2019) detected atmospheric anomalies before and after
various earthquakes (Mw > 6). Under the Lithosphere–At
mosphere–Ionosphere Coupling (LAIC) hypothesis, the
authors identified perturbations within one month preced-
ing all the analyzed seismic events. Additionally, previous
studies have reported TEC perturbations prior to large
earthquakes (Karatay et al., 2010; Le et al., 2011; Arikan
et al., 2016; Shah et al., 2020; Shah et al., 2022).

On the other hand, research has produced conflicting
evidence regarding the role of solar activity and geomag-
netic field disturbances in triggering earthquakes (Love,
2013; Marchitelli et al., 2020; Akhoondzadeh and De
Santis, 2022). The debate surrounding extraterrestrial fac-
tors in seismicity remains controversial. Odintsov et al.
(2006), for example, suggested that the Sun, as the stron-
gest energy source near the Earth, may potentially have a
connection with different elements of solar activity and ter-
restrial processes.

Despite the lack of complete understanding regarding
the physical mechanisms underlying these connections, sev-
eral hypotheses have been proposed. These include the pen-

etration of electric current vortices and magnetic field
variations from the ionosphere into the electrically conduc-
tive lithosphere, resulting in additional mechanical forces
within seismic rupture zones (Urata et al., 2018). Another
hypothesis involves the deposition of solar wind energy
into the polar ionosphere, leading to disturbances in air
mass transfer and affecting the pressure balance on tectonic
plates (Gousheva et al., 2003). Additionaly, the induction
of eddy electric currents in faults has been postulated
(Han et al., 2004). Although these studies revealed some
important aspects on ionospheric perturbations preceding
earthquakes, all the details are yet to be fully observed
(Tsugawa et al. 2011). However, as mentioned by
Delorey et al. (2017), continued advancements in technol-
ogy, particularly in terms of instrumentation and tech-
niques, are likely to unveil precursors for most of the
earthquakes.

The aim of this research is to present a first approach to
apply a machine learning technique for classifying between
periods of seismic and non-seismic activity based on pro-
posed features. Furthermore, the study aims to demon-
strate significant differences between data recorded during
seismic and non-seismic periods. The structure of this
paper is organized as follows: Section II provides a descrip-
tion of the Materials and Methods utilized, Section III
encompasses the Results and Discussions, and finally, the
Conclusions are summarized in Section IV.

2. Materials and methods

Mexico exhibits different tectonic configurations across
its territory. The regions along the Pacific coast, part of
the Pacific Ring of Fire, are prone to register telluric activ-
ity. Thus, highly seismic regions. In fact, some of the lar-
gest earthquakes ever documented in Mexican history
have occurred offshore the Jalisco region, such as those
recorded in 1932 (Ms ¼ 8:1) and 1995 (Mw ¼ 8) (Singh
et al., 1985; Courboulex et al., 1997). Despite the preva-
lence of seismic activity, certain regions in Mexico exhibit
null or scarce seismic activity. These areas include Yucatan,
Quintana Roo, Tamaulipas, Nuevo Leon, Coahuila, Cam-
peche, and Chihuahua (Godinez-Dominguez et al., 2021).

2.1. Earthquake data

According to different studies, significant changes in
the ionosphere have been observed before and after earth-
quakes of Mw � 5:0 (Singh et al. 2009; Muhammad et al.,
2023). For this study, a total of 30 earthquakes of
Mw � 5:0 occurred in Mexico between the years 2015
and 2019 were selected (Table 1). Additionally, a set of
20 non-seismic periods were selected (Table 2). The data
for the non-seismic periods was collected from GPS sta-
tions located in the states of Quintana Roo and Chi-
huahua (Fig. 1). The selection of non-seismic periods
prioritized time intervals that did not coincide with earth-
quakes registered in nearby seismic areas. According to
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Table 1
The selected seismic events (Mw � 5) recorded in Mexico between 2015 and 2019, according to the National Seismological Service catalog (http://www.ssn.unam.mx/). The time, depth, magnitude and
location of the earthquake is provided. ‘‘BCS” refers to Baja California Sur.

Event Day Month Year Time (UTC) Depth (Km) Magnitude (Mw) Latitude N (�) Longitude W (�) Distance from station to
the epicenter (Km)

State

1 22 04 2019 20:15:23 7 5.5 16 �98.55 158.80 Oaxaca
2 21 01 2019 11:57:19 35 5.8 15.42 �94.94 233.72 Oaxaca
3 19 01 2018 16:17:45 16 6.3 26.66 �111.10 749.07 BCS
4 03 11 2017 11:52:06 16.2 5.6 18.71 �106.51 406.10 Jalisco
5 24 09 2017 10:06:08 15.8 5.8 15.08 �94.33 214.98 Chiapas
6 23 09 2017 14:31:47 10 5 16.45 �94.99 163.07 Oaxaca
7 23 09 2017 12:53:04 22 6.1 16.49 �95.14 216.97 Oaxaca
8 23 09 2017 10:38:05 35 5.8 15.25 �94.58 209.71 Oaxaca
9 19 09 2017 07:53:10 11.7 5.6 14.79 �94.42 222.54 Chiapas
10 18 09 2017 14:19:14 15 5.8 15.25 �94.76 211.55 Oaxaca
11 12 09 2017 05:08:45 24.6 5.5 14.98 �94.01 179.50 Chiapas
12 11 09 2017 21:09:13 16.1 5.6 14.97 �94.05 183.66 Chiapas
13 10 09 2017 03:07:21 19.7 5.8 15.23 �94.63 205.00 Oaxaca
14 09 09 2017 04:54:49 23.4 5.6 14.74 �94.07 185.05 Chiapas
15 08 09 2017 04:49:17 45.9 8.2 14.76 �94.10 188.20 Chiapas
16 14 06 2017 07:29:04 107.1 6.9 14.72 �92.31 9.88 Chiapas
17 10 06 2017 18:47:30 9.8 5.5 13.98 �93.25 133.07 Chiapas
18 31 03 2017 09:58:05 101.5 5.3 15.59 �93.17 132.54 Chiapas
19 07 11 2016 03:50:19 94.9 5 15.87 �93.96 199.78 Chiapas
20 30 07 2016 13:53:13 14.2 5 13.98 �91.73 252.90 Chiapas
21 23 07 2016 08:51:51 20 5.4 14.46 �103.75 633.51 Michoacan
22 18 07 2016 19:02:15 71.9 5 14.56 �92.59 191.96 Chiapas
23 15 06 2016 13:46:54 71.3 5.3 13.98 �91.80 108.09 Chiapas
24 02 06 2016 02:23:07 6.2 5.6 18.13 �105.69 382.60 Jalisco
25 23 05 2016 19:20:39 130.1 5.3 16.64 �94.04 273.23 Chiapas
26 27 04 2016 12:51:18 20 6 14.29 �93.38 125.30 Chiapas
27 25 04 2016 07:07:12 10.4 6 14.53 �93.21 97.377 Chiapas
28 15 04 2016 14:11:24 12 6.1 13.25 �92.45 172.27 Chiapas
29 22 02 2015 14:23:13 16 6.2 18.64 �106.95 286.45 Jalisco
30 12 02 2015 15:50:56 15 5.5 19.16 �105.91 179.79 Jalisco
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the catalog of the National Seismological Service, no
earthquakes with Mw � 5:0 were recorded during the
non-seismic periods.

Each period consisted of 14 days. For the earthquake
periods, 8 days before the main shock, the earthquake
day and 5 days after. The geographical distribution of
the selected earthquakes and the GPS stations are shown
in Fig. 1. Almost half of the earthquakes studied were
recorded in Chiapas (17 events), followed by Oaxaca (7
events), Jalisco (4 events) and Michoacan and Baja Califor-
nia Sur (1 event each), which are highlighted in Fig. 1.

2.2. GPS satellite data

The selection of events and stations in the study area
was based on data availability. Specifically, the GPS net-
works that operate with high performance and reliability
were the objective. After evaluating the availability, sam-
pling frequency, and data quality; spatial data with a fre-
quency of 1 Hz were downloaded from 11 GPS stations.
These selected stations are represented as blue circles in
Fig. 1, and their geographic locations are listed as a
Table S3 in the Supplementary Material.

In Fig. 1, it can be seen that most of the earthquakes
were concentrated in the Southeast part of Mexico (ap-
proximately 25 out of 30 events, 83% of the total). Also,
most of the earthquakes considered in this study occurred
in 2017 (15 out of 30 earthquakes, 50%). Meanwhile, the
non-seismic events mostly correspond to periods in the
year 2017 (40% of the total, Table 2). On the other hand,
the largest magnitude recorded in the dataset was
Mw = 8.2, followed by Mw = 6.9. Additionally, 12 earth-
quakes had a magnitude 5 � Mw � 5.5, while 18 earth-
quakes had a magnitude Mw > 5.5.

2.3. Data processing

The GPS satellites broadcast important information
about the atmospheric layers. Specifically, the system
dual-frequency capability enables measuring the phase dif-
ference between two signals of different frequencies trans-
mitted by each satellite (L1 = 1575.42 MHz and L2 =
1227.60 MHz). This process enables the calculation of the
ionospheric parameter known as Total Electron Content
(TEC). As described by Sardon et al. (1993), TEC repre-
sents the total number of free electrons present in the iono-
sphere along the line of sight between the satellite’s altitude
and a ground-based receiver. The unit of measurement for
TEC is TECU (Total Electron Content Units), where 1

TECU is equivalent to 1016e=m2.
The software ‘‘RINEX_HO” (Marques et al. 2011) was

used to calculate the ionospheric VTEC using pseudorange
ðPRLiÞ measurements, as represented by Eq. (1).

TEC ¼ f 2
L1f

2
L2

40:3ðf 2
L2�f

2
L1Þ

½PRL1 � PRL2 � c DCBr þ DCBsð Þ þ �L1L2�

ð1Þ

where f Li ¼ ði ¼ 1; 2Þ represents the GPS frequencies,
DCBr and DCBs (in second units) are the polarization of
the receiver and satellite differential code, respectively.
That is, the hardware delays between the two frequencies.
The speed of light in vacuum is denoted as c, and �L1L2
represents the non-modeled residual effects. This tool
requires a RINEX observation file as input and utilizes
the pseudorange measurements smoothed by the phase.
The algorithm utilized for pseudorange smoothing
follows the equations described by Teunissen (1991) and
Jin (1996), with more detailed information provided in
Marques et al. (2011).

Table 2
Non-seismic periods selected between 2018 and 2015.

Period Days Month Year State

1 01–14 02 2018 Quintana Roo
2 21–06 02 – 03 2018 Quintana Roo
3 01–14 03 2018 Quintana Roo
4 18–31 03 2018 Quintana Roo
5 16–29 04 2018 Quintana Roo
6 11–24 05 2018 Quintana Roo
7 01–14 01 2017 Quintana Roo
8 11–24 01 2017 Quintana Roo
9 19–01 01 – 02 2017 Chihuahua
10 14–27 02 2017 Quintana Roo
11 02–15 03 2017 Chihuahua
12 18–31 07 2017 Quintana Roo
13 01–14 12 2017 Chihuahua
14 13–26 12 2017 Quintana Roo
15 05–18 09 2016 Quintana Roo
16 16–29 09 2016 Chihuahua
17 07–20 11 2016 Chihuahua
18 16–29 11 2016 Quintana Roo
19 01–14 12 2016 Chihuahua
20 23–06 11 – 12 2015 Quintana Roo

Fig. 1. Location of the Mw � 5.0 earthquakes that occurred in Mexico
between 2015 and 2019, as reported by the National Seismological Service.
Different dot colors and sizes are used to represent the magnitude. The
selected GPS stations are denoted with blue dots.
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Since solar activity is the primary driver of ionization in
the ionosphere, it is important to consider various solar
indices. This helps in identifying and discarding large-
scale transient ionospheric disturbances that may arise
due to Space Weather. Therefore, distinct geomagnetic
and solar indices were consulted for both seismic and
non-seismic periods. To study the long-term evolution of
the solar cycle, the relative number of sunspots (R) and
its monthly averaged data (SSN) were obtained from the
Global Data Center SILSO in Brussels (https://wwwbis.
sidc.be/silso/).

Additionally, due to its widely use as an indicator of
solar activity the F10.7 index was consulted (https://
www.spaceweather.gc.ca/). To further assess solar activity,
the occurrence of large X-ray class (>M1) and very large
X-ray class (>X1) solar flares was considered. Information
about these solar flares was obtained from the catalogue
available at https://www.wdcb.ru/stp/data. As indicators
of geomagnetic activity, the Kp and Dst indices were con-
sulted. The Kp index provides information about distur-
bances in the Earth’s magnetic field, while the Dst index
records variations in the equatorial ring current
(Mayaud, 1980). Data for both indices were obtained from
the NASA OMNIWeb data explorer (https://omniweb.
gsfc.nasa.gov/form/dx1.html).

The solar energy indices mentioned above are presented
in Fig. 2, providing an overview of the solar activity during
the study periods. In general, these indices are used in the
literature to distinguish between earthquake and Space
Weather effects (Fig. 3).

The median ðxÞ
�
, standard deviation (r), variance r2ð Þ,

and the Mean Square Error (MSE) of the VTEC values
were calculated. Also, the cross-correlation method was
applied, the formula is provided in Eq. (2).

Rxy mð Þ ¼ E xnþm þ y�n
� � ¼ E xny�n�m

� �
;�1 < n < 1g ð2Þ

Where complex conjugation is denoted by the * symbol
and E is the expected value operator. The cross-correlation
method enable to identify a potential relation between two
signals. In this particular case, the signals under study were
the geomagnetic and solar indices for the entire periods.

From the cross-correlation results the following charac-
teristics were evaluated: (1) the fit, this represents the
amount of data at a given point, (2) symmetry, this indi-
cates the degree of symmetry in the data, (3) kurtosis, this
measures the relative shape of the data compared to a stan-
dard bell curve (for example, unimodal or bimodal) and
can be interpreted as an attribute of the ridge, (4) inclina-
tion, this describes the deviation from horizontal symmetry
in the data, and (5) skew, this evaluates the level of symme-
try in the data.

Currently, the underlying physical processes of earth-
quakes are not fully understood. As a result, machine
learning has emerged as a valuable tool for applying
mathematical and statistical methods to earthquake fore-
casting. Machine learning involves the use of data to
build models, with the primary objective being to classify
data into specific classes. In this study, the supervised
learning model Support Vector Machine (SVM) was
implemented due to its high generalization capacity and

Fig. 2. Time series of solar activity indices for the period under study: monthly averaged values of Sunspot Number (SSN), number of solar flares of M1-
X7 classes, and the F10.7 index. For solar flares, the month corresponding to a period under study is indicated with a colored arrow. The red arrow
indicate seismic events and the blue arrow indicate non-seismic periods.
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ability to handle real-world problems involving small
sample sizes and nonlinear data, in addition to a strict
theoretical base (Jiang et al., 2009).

Previous studies have reported significant TEC distur-
bances in the ionosphere up to nine days before an earth-
quake (Karatay et al., 2010; Deviren et al., 2014; Arikan
et al., 2016). Moreover, Le et al. (2011) demonstrated that
TEC disturbances are concentrated mainly from one to
nine days before strong earthquakes, pointing out that
these disturbances are more likely to be seen before an
earthquake than on seismically inactive days. This is partic-
ularly relevant for the period examined in this study, which
focuses on the eight days preceding an earthquake. Based
on the aforementioned studies, the probability of detecting
differences between seismic and non-seismic periods is
favorable.

In general, an SVM can be described as follows: Given
N vectors {x1, x2, ::xn}, where each vector xj consists of m
characteristics {aj1, aj2 , ::ajm} and belongs to one or two

classes, C1 or C2. Therefore, if a hyperplane is discovered
in the feature space that separates instances belonging to
classes C1 and C2, it indicates that the provided data is lin-
early separable. Consequently, the primary objective of an
SVM is to determine a hyperplane that effectively classifies
all training vectors into their respective classes. Specifically,
an SVM represents a linear discriminant function, denoted
by:

S xð Þ ¼ wT xþ b ð3Þ
Where x represents a feature vector, w denotes an m-

dimensional weighting vector, and the scalar b represents
the bias. The weight vector is orthogonal to the hyperplane
and determines its direction, while the skew controls its

position. In this sense, if a feature vector x
�
is given, then

S x
�� �

¼ wT x
�þb can be expressed as follows:

S x
�� �

¼ wT x
�þb > 0 if x

�
is an instance of C1.

Fig. 3. Flow chart describing the applied methodology.
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S x
�� �

¼ wT x
�þb < 0 if x

�
is an instance of C2.

The training phase of an SVM involves adjusting the
weights and bias in order to achieve the separation of all
instances belonging to classes C1 and C2 by the hyperplane.
In regards to the hyperplane, the most favorable scenario is
for it to be positioned as far as possible from the closest
instances of both classes (Kim, 2017). It shoud be noted
that any supervised classification model, including SVMs,
requires a predefined set of input data, which involves the
selection and collection of appropiate parameters. Addi-
tionally, the data needs to be labeled or categorized into
classes (seismic, non-seismic), in order to train the model
and make predictions for new inputs.

The implementation of an SVM classification model to
distinguish between periods of seismic and non-seismic
activity was performed using a programming and numeric
computing platform specialized in data analysis, algorithm
development, and model creation. As part of the SVM
model implementation, the collected data was divided into
two final datasets:

(1) The training set, which comprised 90% of the data,
encompassed dates ranging from April 22, 2019, to
December 06, 2015.

(2) The testing and final evaluation set constituted the
remaining 10% of the data and covered dates between
July 18, 2016, and September 2017.

In addition, since features constitute the most important
part of classification problems, a set of 90 features was pre-
pared considering the first eight days of each period
(Table 4). These features were constructed using statistical
data, results obtained from implemented analyses (such as
kurtosis and skewness), and the evaluations conducted (de-
tailed in Table 4). Moreover, to reduce the dimensions of
the feature vector, Principal Component Analysis (PCA)

was applied. The reduced features were then used as inputs
for a Medium Gaussian SVM, using a Gaussian kernel
function with a kernel scale of 1.4. The SVM model was
trained using a box constraint level of 1 and the one-vs-
one multiclass method.

3. Results and discussions

The main difference observed between seismic and non-
seismic periods in this study was the magnitude of VTEC.
Generally, seismic events reached up to 40 TEC units
(TECU), while the non-seismic periods remained below
30 TECU (Fig. 11). Furthermore, the VTEC during seismic
periods presented higher maximum and average values
compared to the overall period under study (Fig. 4 and
Fig. 10). However, the higher VTEC values recorded dur-
ing seismic events do not necessarily indicate a precursor
phenomenon. The ionosphere, being a medium easily influ-
enced by external factors such as Space Weather, can con-
tribute to the observed variations. Additionally, the effects
of ionosphere perturbations caused by physical mecha-
nisms can not be denied.

These mechanisms include direct acoustic waves gener-
ated by vertical crustal movements (Heki et al. 2006), iono-
spheric effects induced by aerosols and metallic ions
propagated in the atmosphere (Pulinets et al. 1994), and
the alpha decay of gas radon emitted from the Earth’s crust
(Heki, 2011), among others. It should be noted that even
factors unrelated to seismic activity can influence the state
of the ionosphere (Zaslavski et al., 1998).

In order to analyze variations related to season and geo-
graphic location, the periods were divided based on month,
year, and data collection site. In Fig. 5, three events from
the year 2015 are shown. It can be observed that seismic
periods exhibit higher variations in VTEC, as indicated
by the larger standard deviations. Also, the mean VTEC
values range between 20 and 40 UTEC. In contrast, the

Table 4
The selected features for the SVM classification model.

Number Feature

1 Daily mean of VTEC.
2 Daily standard deviation of VTEC.
3 Daily variance of VTEC.
4 Daily maximum value of VTEC.
5 Daily minimum value of VTEC.
6 Evaluation of daily geomagnetic Dst index. If < -50 nT, then assigned 1, otherwise assigned 0.
7 Evaluation of daily solar F10.7 index. If > 120 s.f.u., then assigned 1, otherwise assigned 0.
8 Daily number of sunspots (R).
9 Daily Mean-Squared Error (MSE) of VTEC.
10 Evaluation of daily solar flares (M1 - X7 classes) releases. If true, then assigned 1. If false, assigned 0.
11 Daily maximum value of solar F10.7 index.
12 Daily minimum value of solar F10.7 index.
13 Maximum value of geomagnetic Kp index.
14 Daily variations in the VTEC mean.
15 Season of the year per period.
16 Value for skewness based on cross-correlation results.
17 Value for kurtosis based on cross-correlations results.
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non-seismic periods generally remain below 20 TECU.
Fig. 6 further highlights the significantly difference in stan-
dard deviation between earthquake-related events and non-
seismic periods.

Fig. 7 illustrates the mean VTEC and standard deviation
for the non-seismic periods of January and December 2017.
Despite being located in different regions, these periods
exhibit a low variation in both mean VTEC and standard
deviation. Furthermore, the mean VTEC and standard
deviation for events recorded in September 2017 from Oax-
aca and Chiapas display similarities.

In Fig. 8, the mean VTEC of seismic event 3 is shown,
which is the only recorded event in Baja California Sur,
located in the Northwest region of Mexico. The mean
VTEC during this event was slightly above 10 TECU.
The corresponding standard deviation indicates that there
were minor variations in the VTEC values throughout this
seismic event. However, the non-seismic periods recorded
in the Eastern state of Quintana Roo during the same year
exhibited similar mean VTEC values and a low standard
deviation, particularly in the month of February.

For Figs. 5–9 the mean VTEC was calculated using the
complete period of days corresponding to each event. In
general, most of the non-seismic events showed lower mean
VTEC values compared to the earthquake events. How-
ever, the VTEC values for the seismic events 2 and 3 were
even lower than the mean VTEC values of the non-seismic
events (Fig. 10). In fact, these two seismic events had the
lowest mean VTEC values and were recorded in January
of 2019 and 2018, respectively. On the other hand, the seis-
mic events occurring between 2015 and 2016 registered the
highest mean VTEC values.

Moreover, from Figs. 5–9, some questions were formu-
lated regarding the changes in mean VTEC before, during,
and after the earthquakes studied, as well as how this
change compares with non-seismic periods. First, how does
the mean VTEC change before, during, and after earth-
quakes? The mean number of days with VTEC increments
was 3.5 days, with most events showing VTEC increments
within 3 to 4 days before the earthquakes. The maximum
increment observed was 6.92 TECU, and the maximum
decrement was 9.23 TECU. The minimum increment and
decrement were 0.39 and 0.48 TECU, respectively.

During the days of the main shock, increments and
decrements remained equal. The maximum increment was
2.83 TECU (Event 24) and the maximum decrement was
5.69 TECU (Event 30). After the earthquake, VTEC decre-
ments predominated, with 21 of 30 events showing more
days with decrements. The maximum increment during this
period was 5.53 TECU (Event 4), and the maximum decre-
ment was 9.25 TECU (Event 26).

This raised the final question, does the mean VTEC tend
to decrement after an earthquake? After the earthquakes
studied, the mean VTEC tends to decrement. The mean
number of days with VTEC increments was 2.13, occurring
within 1 to 2 days after the main shock. On the other hand,
VTEC decrements had an average of 2.86 days, occurring
within 2 to 3 days after the main shock.

The absolute values (| |) of the maximum increment and
decrement of the mean VTEC for the periods before, dur-
ing and after the earthquake were as follows: |6.92 TECU|
and |9.23 TECU|, |2.83 TECU| and |5.69 TECU|, |5.53
TECU| and |9.25 TECU|, respectively. This indicates a high
variability, with the maximum decrements in the mean
VTEC showing greater values.

In comparison with the non-seismic periods, most events
(15 out of 20) presented days with VTEC decrements, and
only 5 events showed increments in most of the days. The
maximum increment and decrement observed was 3.47
TECU and 4.43 TECU, respectively. The absolute values
(| |) for non-seismic periods were: |3.32 TECU| and |2.83
TECU|, |1.21 TECU| and |1.20 TECU|, |3.47 TECU| and
|4.43 TECU| for increments and decrements, respectively.
In this case, the variability of VTEC was smaller, and a dif-
ferent trend was observed compared to seismic events.

The consecutive geomagnetic storms depicted in Fig. 11
correspond to the seismic events 11,12,13,14 and 15, which
occurred from September 8 to 12, 2017. In this particular

Fig. 4. The average VTEC for the complete seismic and non-seismic
periods.

Fig. 5. Mean and standard deviation of VTEC per day for events in 2015,
with events identified as ‘‘E” followed by its number. Data collection site
denoted to the left of event number. Seismic events shown with red bars,
non-seismic periods with blue bars. X-axis indicates days before and after
the earthquake (‘‘EQ”).
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Fig. 6. Mean and standard deviation of VTEC per day for events in 2016, with events identified as ‘‘E” followed by its number. Data collection site
denoted to the left of event number. Seismic events shown with red bars, non-seismic periods with blue bars. X-axis indicates days before and after the
earthquake (‘‘EQ”).

Fig. 7. Mean and standard deviation of VTEC per day for events in 2017, with events identified as ‘‘E” followed by its number. Data collection site
denoted to the left of event number. Seismic events shown with red bars, non-seismic periods with blue bars. X-axis indicates days before and after the
earthquake (‘‘EQ”).
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case, these intense solar-terrestrial disturbances were asso-
ciated with Space Weather phenomena that occurred dur-
ing the month of September 2017.

The reference value for non-quiet conditions of Dst
< � 20 nT was selected based on the values used in
Akhoondzadeh et al. (2010). Therefore, most of both the
seismic and non-seismic periods in this study exhibited dis-
turbed geomagnetic conditions (Fig. 12). However, the
VTEC during seismic events was higher, particularly in
events 1 and 2. In general, 19 non-seismic periods exceeded
the Dst threshold of < -20 nT (95% of the dataset), while 28
seismic events (93.33% of the dataset) also surpassed this
threshold (Fig. 12).

Additionally, a vertical black dotted line was placed at
30 TECU in Fig. 12 to assess the VTEC values. This con-
sidering the maximum VTEC value recorded in the non-
seismic periods, which was 34.13 TECU (Event 15). The
analysis reveals that 24 seismic events (80% of the dataset)

surpassed the maximum VTEC value recorded in the non-
seismic periods. This indicates a higher VTEC magnitude
during seismic events compared to non-seismic periods.

The solar and geomagnetic indices have been used as a
valuable tool to distinguish between ionospheric distur-
bances associated with solar activity and those possibly
related to earthquakes. In this sense, the following solar
and geomagnetic indices were analyzed: the F10.7 index,
R, SSN (Sunspot Number), Kp index and Dst index. Also,
to evaluate the behavior of these indices, specific reference
values were selected. Kp index values exceeding 3 units
were considered indicative of disturbed conditions
(Thomas et al., 2017). Additionally, disturbed conditions

Fig. 8. Mean and standard deviation of VTEC per day for events in 2018, with events identified as ‘‘E” followed by its number. Data collection site
denoted to the left of event number. Seismic events shown with red bars, non-seismic periods with blue bars. X-axis indicates days before and after the
earthquake (‘‘EQ”).

Fig. 9. Mean and standard deviation of VTEC per day for seismic events
in 2019, with events identified as ‘‘E” followed by its number. Data
collection site denoted to the left of event number. X-axis indicates days
before and after the earthquake (‘‘EQ”).

Fig. 10. Maximum VTEC values recorded in the period of days
considered per event.
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were associated with F10.7 index values > 120 solar flux
units (s.f.u.) (Kim et al., 2017).

In Fig. 13, the colored sections represent the disturbed
days for each event, based on the previously defined refer-
ence values (Kp > 3, Dst < -20 nT, F10.7 > 120 s.f.u.).
Notably, the solar index F10.7 exhibited the fewest dis-
turbed days during both earthquake and non-seismic peri-
ods. However, these disturbed days were concentrated
between September 8 to September 12, 2017, which corre-
sponds to the time period of seismic events 11 to 15
(Fig. 11).

During this particular period, the intense solar-
terrestrial disturbances were likely caused by the solar
active region named ‘‘AR2673”, which produced multiple

X-class solar flares from September 4 to September 10,
2017. This activity included a strong solar flare (X9.3)
recorded on September 6, 2017 (Fig. 2). Following this
flare, a severe geomagnetic storm (type G4) occurred on
September 7 and 8, 2017, and a second strong solar flare
(X8.2) on September 10, 2017, during solar cycle 24.

It should be noted that after the main flare (X9.3), a
strong earthquake (Mw = 8.2, Event 15 of Table 1)
occurred on September 8, 2017, at 04:49 UT, with the epi-
center located off the Pacific coast of Oaxaca. This earth-
quake was the strongest recorded in Mexico since 1932.
Furthermore, 11 days after, on September 19 (18:14 UT)
another earthquake (Mw = 7.1) took place at the border
of Puebla and Morelos in Mexico (Dorman et al., 2019).

Fig. 11. VTEC and Dst index for the events under study.

Fig. 12. Maximum values obtained per event for the Dst index and VTEC. The vertical black dotted lines indicate the reference values of �20 nT and 30
TECU. On the right side, seismic events are shown in red color, and on the left side, non-seismic periods are displayed in blue color.
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Furthermore, Fig. 13 illustrates that seismic events 5 to
15, totaling 11 events, exhibited the highest accumulation
of disturbed days based on the Dst index, using the previ-
ously defined threshold (i.e., Dst < -20 nT). During these
events, at least 78% (11 days) of the study period experi-
enced disturbances. Also, these seismic events occurred in
2017, which recorded the highest number of seismic events
(Mw � 5) considered in this study (15 out of 30).

The analysis of disturbed days during the period corre-
sponding to seismic events revealed that the Dst index
was the most recurrent (46%), followed by the Kp index
with 38%, while the F10.7 index showed the least likelihood
of surpassing the defined threshold (8%) (Fig. 13). Like-
wise, the disturbed days during non-seismic periods exhib-
ited similar patterns. In specific, the occurrences of
disturbed days for non-seismic periods were as follows:
Dst index (38%) and Kp index (28%). However, distur-
bances in the F10.7 index did not occur during any non-
seismic period in this study. In general, the days that
exceeded the defined threshold for the evaluation of the
Dst index were 8.4% more recurrent during seismic events

than during non-seismic periods (46% vs 38%,
respectively).

The results from the cross-correlation analysis were also
analyzed for both seismic and non-seismic periods. Some of
the selected characteristics used to evaluate the cross-
correlation contribute to the classification objectives. For
example, the type of skew distribution between classes
allows for classification based on biases. Additionally, the
different skewness of the distributions within the classes
helps explain the data characteristics. Therefore, skewness
is a useful measure to achieve the classification objectives
(Suthaharan, 2016).

The fit, kurtosis and inclination were also analyzed. To
calculate the level of bias from the cross-correlation analy-
sis, the following conditions were considered: if the value
was less than � 1 or > 1, the data was considered highly
skewed. If the value fell between � 1 and � 0.5 or between
0.5 and 1, then the data was moderately biased. Regarding
inclination, a value greater than zero indicated a positive
skew to the right. To determine the adjustment, the length
of the signal was considered. For example, if the highest

Fig. 13. The y-axis represents the time in days, with the reference point being the earthquake day (‘‘EQ”). The colored sections in each panel indicate the
days that surpassed the defined threshold for evaluating the Kp, Dst and F10.7 indices.
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point of the distribution equaled the signal length, the fit
was considered at zero.

For asymmetry, a value greater than � 0.5 and less than
0.5 denoted an approximately symmetric distribution. If
the value was equal to zero, the distribution was considered
perfectly symmetric; otherwise, it was asymmetric. More-
over, to determine the type of kurtosis and its excess, the
following conditions were established: a value equal to 3
indicated a Mesokurtic type, a value less than 3 denoted
a Platykurtic type, and a kurtosis value > 3 corresponded
to a Leptokurtic type.

In general, the previous analyses and results formed part
of the selection and collection process of competent param-
eters considered for the machine learning technique. The
features selected for machine learning are listed in Table 4.
Furthermore, to assess the results from the SVM model,
the confusion matrix for the training set is shown in
Fig. 14. The accuracy scores were compute using k-fold
cross-validation (k = 5), and the average cross-validation
error is reported. The SVM model indicated a validation
accuracy of 88.9% for the training set. Specifically, the fol-
lowing training result metrics were obtained: Accuracy
(Validation): 88.9%, Total misclassification cost (Valida-
tion): 5, Prediction speed: �600 obs/sec, Training time:
�0.79 sec.

Positive Predictive Values, or PPV in the confusion
matrices, refers to the percentage of successfully classified
observations per predicted class. Further, the percentage
of incorrectly classified observations per predicted class is
known as FDR, or False Discovery Rates. After training
the model, the performance of the test set was evaluate.
The following test set metrics were compute: Accuracy
(Test): 80%, Total cost (Test): 1. The confusion matrix
for the test set is shown in Fig. 15.

Among the limitations of the current study, the sample
size stands out. While a larger sample size typically
enhances the reliability and accuracy of a machine learning
model, the initial approach adopted in this study for classi-
fying seismic events from non-seismic periods demon-
strated promising results, considering the specified
parameters and the days included in the proposed study.
Undoubtedly, these techniques present an interesting
opportunity for real-time monitoring. However, the study
acknowledges that data collection plays a crucial role in
the application of such approaches. This includes the selec-
tion of non-seismic periods and the number of seismic
events considered within the study area.

Moreover, it is essential to choose a model assessment
technique that better fits the sample size, the physical
aspects of the data, and the computational cost. Address-
ing these limitations in future studies will be critical to
advancing the field. Furthermore, it should be noted that
statistical analysis and evaluation of various study cases
are essential for the development of earthquake precursor
studies (Akhoondzadeh, 2019). These considerations will
help refine and improve the accuracy of earthquake predic-
tion models.

4. Conclusions

The development of society points to a future in which
the collection, analysis and use of data will increase, and
computer methods such as machine learning will benefit
from this. Hence, as technology develops and more data
is being analyzed, the opportunity to delve deep into the
field of earthquake forecasting arises. In this study, VTEC
along with different geomagnetic and solar indices were

Fig. 14. Confusion matrix results for the training set per predicted class.
Positive predictive values (correctly predicted points) are displayed in blue
for each class. Conversely, false discovery rates (incorrectly predicted
points) are indicated in peach color for each class. Class E stands for
earthquake-related events and NE for non-seismic periods.

Fig. 15. Confusion matrix results for the test set per predicted class.
Positive predictive values (correctly predicted points) are displayed in blue
for each class. Conversely, false discovery rates (incorrectly predicted
points) are indicated in peach color for each class. Class E stands for
earthquake-related events and NE for non-seismic periods.
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obtained with the aim of applying an initial approach of a
machine learning model capable of classifying between
periods of seismic and non-seismic activity.

The analysis was performed considering a 14 day period.
A set of 30 seismic and 20 non-seismic periods was consid-
ered. The ground motions were registered in Mexico.
According to the results, seismic events presented higher
VTEC values than the non-seismic periods. This difference
was significant for most of the events. Regarding the period
of years under study, the non-seismic periods occurred
between 2015 and 2018, while the seismic events occurred
between 2015 and 2019. Therefore, possible temporal vari-
ations were likely negligible.

Moreover, 46% of the total days with seismic events pre-
sented values that exceeded the quiet threshold defined for
the Dst index (<- 20 nT), compared to 38% of the non-
seismic periods. Among the considered solar and geomag-
netic indices the least recurrent for seismic and non-seismic
periods was the F10.7 solar index (8% vs 0%, respectively).
Furthermore, considering the studied events, it was more
likely that a seismic event occurred in a month where a
solar flare of M1-X7 type was registered (66% for seismic
events vs 20% for non-seismic events).

On the other hand, the use of machine learning facili-
tated the handling and application of a considerable
amount of different types of data. However, it is important
to take into account the physical characteristics of the data
during analysis. Additionally, it allowed to demonstrate
that Support Vector Machines (SVM) represents a good
opportunity for this approach. In this manner, the results
from the SVM model indicated a validation accuracy of
88.9% for the training set, and an accuracy of 80% was
achieved for the test set. Finally, the existence of a potential
relation between earthquakes and the parameters under
study was not evident. Nevertheless, to explore this further,
it would be necessary to consider alternative analyses and
methods.
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