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Gravimeters fabricated with MEMS suffer from temperature-dependent drifts in their long-term stability. We analyze

the thermal contributions to the signal, and we propose three mechanisms to mitigate their effects. The first one uses

materials that fulfill the condition αE = −2α , where the thermal expansion is canceled by the temperature variation

of the Young’s modulus. The second one uses the thermal expansion to introduce a compression that compensates the

variation in the force of the spring. In the third one, the expansion compensates the displacement of the proof mass in

the sensor, rather than the force. The three mechanisms are robust since they only depend on the temperature of the

sensor itself.

I. INTRODUCTION

Recent progress in precision gravimetry has found exten-

sive applications both in fundamental physics and technol-

ogy. They appear in proposals to test Non-Newtonian grav-

ity at small scales1–3, quantum gravity4–6 and dark mat-

ter detection7,8. Applications include inertial navigation9,10,

monitoring of volcanic activity11,12, seismometry13–15, explo-

ration of underground resources like water or oil5,16–18, and

even monitoring climate changes19,20.

The gravimeters are divided into absolute and relative. The

first ones include the FG5-X gravimeter21 and those using

cold22–25 or ultra-cold atoms26,27. Unfortunately they are

expensive and not very practical for field applications due

to their weight and complexity, even with the most recent

versions28–34.

Gravimeters based on micro-electromechanical-system

(MEMS) have been gaining importance due to their reliability,

low cost and reduced power consumption35–39. They measure

the displacement z or the oscillation frequency ωm of a proof

mass m attached to a spring with elastic constant k. Their

drifts can be mitigated by having absolute gravimeters nearby

for re-calibration40–46. The damping γ determines the ultimate

sensitivity and long-term stability, and having a high mechan-

ical quality factor Qm = ωm/γ provides good isolation from

environmental noise sources46–48. In some gravimeters the

mechanical spring is replaced by a magnetically or optically

levitated mass49–55.

The gravity acceleration is obtained from

g =
k

m
z = ω2

mz. (1)

a)Author to whom correspondence should be addressed:

egomez@ifisica.uaslp.mx

MEMS gravimeters reach a noise floor of about 1

µGal/
√

Hz56,57. In the AC (resonant) configuration, g is mea-

sured through a frequency shift ∆ωm. This method has a high

resolution and large range (no displacement limitation)58–60,

but it requires high quality factors, is more prone to failure

by fatigue, and the temperature-dependent frequency drifts

limit the long-term stability61–65. The DC (static) configu-

ration is easier to implement since g is obtained from the

mass displacement, monitoring the vertical position of a slit

located in the test mass. It has good enough resolution and

range37,56,66 to perform state-of-the-art precision gravity mea-

surements and there is much less risk of damage by fatigue

since passive structures do not experience sufficient mechani-

cal stress cycles to trigger fatigue67.

The long-term stability still requires improvement

in MEMS gravimeters, particularly on the tempera-

ture sensitivity68. Strategies in this direction include

temperature stabilization69–72, passive compensation

through doping65,73,74, materials with opposite thermal

coefficients75,76, differential structure design60,77,78, mode-

localization79,80, engineering the thermal conductance using

periodically nanostructured phononic crystals81–83, and by

compensation of the thermal drift by electrostatically induced

pre-stresses on geometric anti-spring structures84. In addition

to temperature drifts, there is also a pressure dependent linear

drift that is is less problematic since it can be corrected via

software35,36.

In this work, we present three strategies for a MEMS

gravimeter with reduced sensitivity to temperature variations

∆T . The first one is to use materials where the thermal de-

pendence of the expansion and that of the Young’s modulus

cancel each other (section III B). The second uses the expan-

sion to exert a horizontal force along the beams, compensat-

ing the spring force variation (section III B 1). The third varies

the mounting point for the sensor so that the vertical expan-

sion moves the mass back to the original position, keeping

the measurement unchanged (section III B 2). All the strate-

http://arxiv.org/abs/2406.14691v1
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FIG. 1. The magnitude of the susceptibility |χ(ω)| as a function of

angular frequency ω . The solid black curve represent a gravimeter

with ωm1 = 2π × 10 rad/s and dashed gray curve with ωm2 = 2π ×
100 rad/s, both with Qm = 1000.

gies use a DC configuration. In appendix A we analyze the

fundamental sensitivity limits due to the temperature of the

resonator.

II. MECHANICAL GRAVIMETER OPERATION

Consider a mass m attached to two springs giving an effec-

tive constant k = k1 + k2 in the vertical z direction. The mass

position is described by

d2z(t)

dt2
+ γ

dz(t)

dt
+ω2

mz(t) =
Fext(t)

m
, (2)

with a harmonic external force Fext = F̂eiωt = F0ei(ωt−δ f ) and

z = ẑeiωt = z0ei(ωt−δz), where F0 and z0 are real numbers, and

δF and δz the phases. The solution is

ẑ =
F̂

m(ω2 −ω2
m − i ωmω

Qm
)
= χ(ω)â, (3)

where â = F̂/m is the acceleration, and χ(ω) = (ω2 −ω2
m −

i ωmω
Qm

)−1 is the transfer function or mechanical susceptibility,

that gives the sensitivity of a DC gravimeter at ω = 0, taking

â = g the local gravitational acceleration, Eq. (1). There are

three regimes determined by χ(ω). For ω < ωm (green region

in Fig. 1), the resonator exhibits an almost flat frequency re-

sponse χ ≃ 1/ω2
m and is where the DC gravimeter operates.

The sensitivity is increased with a low resonant frequency ωm

(soft spring and heavy mass). The region ω ≃ ωm (narrow

yellow region in Fig. 1), is where an AC gravimeter would

look for a change in resonance frequency. At higher frequen-

cies ω > ωm (blue region in Fig. 1), the resonator acts as a

mechanical low pass filter. Here we focus the discussion on

DC gravimeters.

FIG. 2. Experimental sensitivities by both absolute (blue markers)

and relative (red markers) gravimeters. The horizontal line indicates

a sensitivity of 1 µGal/
√

Hz.

A. Sensitivity, long-term stability and range

To detect the tiny variations of the local gravitational ac-

celeration g, MEMS gravimeters must reach three goals: high

sensitivity, long-term stability and wide range. Figure 2 shows

the sensitivity achieved by both absolute and relative gravime-

ters. It includes many of the technologies available and the

sensitivity that they have reached. The main limitation of

MEMS gravimeters is the long-term stability, with an im-

portant contribution coming from temperature variations35,37.

This includes thermal variations of the Young’s modulus and

the linear coefficient of thermal expansion (CTE) of silicon85,

which is bigger than other materials such as fused silica used

in commercial gravimeters38,86. In this work, we present three

novel solutions to improve the long-term stability of MEMS

gravimeter (section III B).

The range of MEMS gravimeters should be big enough

to cover the variations of g on Earth due to the location,

that changes from 976 Gal to 982 Gal87. It should also in-

clude the temporal variations due to Earth’s tides which vary

in frequency, fluctuating between diurnal (2× 10−5 Hz) and

semi-diurnal (1× 10−5 Hz)35. The mass displacement is on

the scale of one millimiter, something covered with current

MEMS gravimeters35,37,56,57.

III. THERMAL VARIATIONS ON THE GRAVIMETER

Thermal variations affect the measurement of g mainly

through variations in the spring constant k in Eq. (1). The

variation with temperature of any spatial dimension (z) de-

pends on the CTE (α) as

∆z

z
= α∆T, (4)

and we write the change of the Young’s modulus (E) with

temperature as

∆E

E
= αE ∆T, (5)
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where αE is the temperature coefficient of the Young’s modu-

lus.

In the section III A we study the thermal effects on k due to

α and αE . In section III B we propose three ways to compen-

sate the thermal drifts to improve the long-term stability of the

MEMS gravimeter.

A. Temperature dependence of the spring constant

For the simple case of a doubly-clamped beam oscilla-

tor (bridge), the resonant frequency spectrum of a rectangu-

lar beam with uniform density ρ is described by the Euler-

Bernoulli Beam Theory (EBBT) for long beams (L/t > 25)

and pure bending88,89, or by the Timoshenko Beam Theory

(TBT) when the length approaches the thickness and the ef-

fect of shear and rotatory inertia is taken into account90,91 (see

Appendix B). The frequency spectrum of the flexural modes

in the case of EBBT is given by92

f =
κn

2t

4π
√

3L2

√
E

ρ
=

κn
2

4π
√

3

√
E

m
η , (6)

where κn = (n + 1
2
)π is the eigenvalue, L, t and w are the

length, thickness and width respectively of the rectangular

beam (Fig. 3), and η = t3

L3 w is a geometric factor. When

w ≥ 25t, we need to replace E by E(1− ν2)−1 in Eq. (6),

as in our case. In Appendix B we show that for the MEMS

gravimeter parameters and particularly for the lower modes

considered, the corrections to the spectrum due to the TBT

can be neglected and it is enough to use the EBBT. The spring

constant using Eq. (6) is given by

k = m(2π f )2 =
κ4

n

12
ηE. (7)

The geometric factor η is temperature-dependent via α in

Eq. (4). As we described in the Appendix C, silicon has an

isotropic behavior of α , therefore

∆t

t
=

∆L

L
=

∆w

w
=

∆η

η
= α∆T. (8)

Combining Eqs. (5), (7) and (8), we obtain

∆k

k
=

√(
∆E

E

)2

+

(
∆η

η

)2

+ 2
∆E∆η

Eη

= (α +αE)∆T, (9)

which shows the two thermal contributions (α and αE ) to the

variation of k. Taking the force as F =−kz we have

∆F =−k∆z−∆kz = F(αE + 2α)∆T. (10)

B. Compensation of the effect of temperature variations

Temperature fluctuations introduce a variation in the

gravimeter reading, dominated in the case of silicon by the

thermal change of the Young’s modulus93, see Eq. (10). Even

with a temperature control of 1 mK, there is an uncertainty

contribution from thermal variations of 25 µGal35. The ther-

mal sensitivity must therefore be reduced in order to reach the

1 µGal stability regime.

We gain some insight into the thermal sensitivity by us-

ing the analytic expression for the rectangular curved beam

of Ref.94. Considering only the lowest-order term, the force

right at the center of the beam is

F =

(
EIh

L3

)[
3π4Θ2

2

]
∆

(
∆− 3

2
+

√
1

4
− 4

3Θ2

)

×
(

∆− 3

2
−
√

1

4
− 4

3Θ2

)
, (11)

with I = wt3/12 the moment of inertia of the beam and h the

initial deformation of the beam (Fig. 3). ∆ = d/h is the dis-

placement d of the central part of the beam normalized by h,

and Θ = h/t. If Θ >
√

16/3 the force changes to

F =

(
EIh

L3

)
(8π4 − 6π4∆), (12)

over some range of values of ∆94.

Temperature variations have an effect on the Young’s mod-

ulus and on each linear dimension (w, t, L) according to Eqs.

(5) and (8) (see also Appendix C and Eqs. (C4) and (C9)). If

the material expansion is homogeneous, then the dimension-

less quantities Θ and ∆ do not contribute to the force variation,

and all the thermal dependence is given by the term in the first

parenthesis of Eqs. (11) and (12)

∂F

∂T
= F(αE + 2α), (13)

which is the same as in Eq. (10). This is a quite general

result that comes from a dimensional analysis of the force,

which depends linearly on E and quadratically on a spatial di-

mension. In the case of silicon α = 2.57× 10−6 K−195 and

αE = −52.6± 3.45× 10−6 K−196, so that the effect is domi-

nated by αE .

Fabricating the sensor not with silicon, but with a mate-

rial with αE = −2α should remove the dependence of the

force on the temperature, that is, the effect of the change in

Young’s modulus would be canceled by the linear expansion.

Table I gives a list of alloys made out of two materials that

meet the above condition. Their properties change rapidly

around a particular percentage of the second material. The

second column gives the percentages that fulfill the above con-

dition, where the first value we quote on each one has a less

abrupt dependence on percentage, making it the more robust

choice. Beams fabricated with the materials listed in Table

1, would give a bending behavior that remains constant with

varying temperature, a quite interesting property for many ap-

plications. The problem is the availability of such alloys and

the fact that they are not compatible with the same fabrica-

tion techniques as silicon, which is the material of choice for

MEMS devices. In what follows we present two alternative
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TABLE I. Alloys that fulfil the condition αE = −2α at a particular

percentage of the second material. In the second column, the first

percentage value would be the more robust one.

Material Percentage for αE =−2α α (10−6)

Cobalt-Palladium97 90, 96 -32.4

Iron-Palladium98 78, 51 -15

Nickel-Copper99 29, 30.5 -29

Iron-Platinum100 70, 51 -17

Nickel-Palladium101 88, 46, 59.5, 73 16.4

Nickel-Platinum101 50, 61 12.6

mechanisms that can be used to enhance the effect of the lin-

ear expansion to cancel the variation due to the Young’s mod-

ulus, which work with silicon and do not require any special

materials. The first one takes advantage of an additional lon-

gitudinal force induced in the beam due to the expansion. The

second one changes the mounting point for the frame of the

sensor, to obtain a displacement of the slit with temperature,

given that the gravimetry measurement relies on determining

the slit position.

1. Force from the longitudinal expansion

High sensitivity on a MEMS gravimeter is achieved by hav-

ing a weak spring constant k around the operation point. This

is achieved by combining two different springs with positive

and negative stiffness respectively37. We can use Eqs. (11)

and (12) to quantify the effect of both. Consider the test mass

supported by two curved beams as shown in Fig. 3. The up-

per beam is designed to have negative stiffness at the operat-

ing point, whereas the lower one has positive stiffness. We

consider beams of the same width (w) since they would be

fabricated from a single silicon wafer. By carefully adjusting

the parameters of the beams, which are different for the upper

and lower beam, one can obtain a total force at the operating

point (where F = mg) with a slope close to zero, that is, with

a weak spring constant (k = 1 N/m). We consider a test mass

of m = 0.3 g.

Applying an axial external force (Fe) on the lower beam that

is described by Eq. (11), modifies the force to

F =

(
EIh

L3

)[
3π4Θ2

2
∆

(
∆− 3

2
+

√
1

4
− 4

3Θ2

)

×
(

∆− 3

2
−
√

1

4
− 4

3Θ2

)
+

π2L2

2EI
(1−∆)Fe

]
.(14)

We want to use this force to compensate the variation of the

gravimeter reading due to temperature fluctuations. To do this,

suppose we add a piece of a rigid material with no thermal

expansion (for example, Ultra Low Expansion (ULE) mate-

rial) parallel to the beam, as shown in Fig. 3. On one side

both pieces are attached to a fixed common surface, while on

the other there is a cantilever fixed to the ULE material that

is barely touching the gravimeter. At the operating temper-

FIG. 3. MEMS gravimeter (brown) with longitudinal force mecha-

nism for temperature compensation. The blue bar is made out of a

Ultra Low Expansion (ULE) material. The gravimeter and the bar

are both attached to a common surface. The parameters of the beams

are shown on top.

ature, the cantilever exerts no force, but as the temperature

increases, the beam expands by ∆l = lα∆T while the ULE

material maintains a constant length, so that the cantilever ex-

erts an axial force (Fe in Eq. (14)) on the beam given by

Fe = κ∆l = κ lα∆T, (15)

with κ the spring constant associated with the cantilever ac-

tion, and l ≃ L the size of the gravimeter silicon piece, as-

suming a thin gravimeter frame. The ULE material works as

a reference length that does not expand with temperature, so

that the force introduced by the cantilever depends only on the

expansion of the MEMS gravimeter itself.

Consider the slit at a particular position (d0) and tempera-

ture (T0). With a small temperature change and displacement

of the slit, the force in Eq. (14) changes to

F = F +
∂F

∂d
∆d+

∂F

∂T
∆T, (16)

with ∆d = (d − d0), and equating the force to the test mass

weight gives the slit displacement

∆d =− (∂F/∂T )

(∂F/∂d)
∆T. (17)

There are now two contributions to the temperature depen-

dence

∂F

∂T
=

[
F(αE + 2α)+

π2

2
αh2κ2(1−∆2)

]
, (18)
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the first term corresponds to the one given by Eq. (13), and the

second one is related with the force from Eq. (15) on the lower

(positive stiffness) beam. The operating point on a gravime-

ter for the negative stiffness beam has a displacement close to

∆1 = 1. Since the effect of the force scales as (1−∆) as in

Eq. (18), it is more effective to apply the force in the pos-

itive stiffness beam. This contribution can be made positive

or negative depending on the sign of h2, that is, on the direc-

tion of the prefabricated deformation. When the temperature

increases, the force is reduced as in Eq. (13) because αE is

negative, and the slit position gets lowered under the action of

gravity. To compensate this change, the extra term must exert

a positive (upwards) force, which amounts to have a positive

h2.

The temperature dependence is cancelled by setting the

square parenthesis in Eq. (18) to zero, that is, by having a

spring constant of the cantilever equal to

κ2 =− 2F(αE + 2α)

π2αh2(1−∆2)
. (19)

A typical (silicon) beam would end up requiring a κ2 around

100 N/m, which is about the same as that of an aluminum

cantilever of length of 1 cm, width of 1 mm and thickness of

0.2 mm.

The application of an axial force with a V-beam actua-

tor can be used to tune the stiffness of the beams in the

gravimeter84. The authors in that reference proposed mea-

suring the temperature in a feedback loop to the actuator to

correct for the temperature dependence. The compensation

proposed in Eq. (19) has the advantage that the correction

does not depend on the quality of the feedback loop, since the

change in temperature of the sensor introduces the beam ex-

pansion that corrects automatically the variation in the force.

2. Compensation through an expansion

Another option to correct for the temperature dependence is

to apply the correction not in the force, but in the displacement

of the slit in the sensor. The variation in the force introduces

a slit displacement given by Eq. (17). Taking an anchoring

point for the sensor displaced vertically by a distance Lp with

respect to the slit, produces an slit displacement due to the

thermal expansion of the sensor of ∆Lp = Lpα∆T according

to Eq. (4). The position of the slit remains unchanged with

temperature variations if ∆d = ∆Lp, that is

Lp =−F

k

(
αE + 2α

α

)
, (20)

with k the spring constant of the sensor and F = mg. For

our parameters we obtain Lp = 5.4 cm. Figure 4 shows a

more detailed drawing of the proposed configuration. The

slit, the LED and quadrant detector they all lie at the same

height. A bar of a non expanding material (ULE for example)

is mounted at that same height, while the sensor frame is at-

tached at the opposite end of the ULE material of length Lp.

The height of this holding point (P) for the sensor would not

FIG. 4. MEMS gravimeter (brown) with slit displacement mecha-

nism for temperature compensation. The blue bar is made out of a

Ultra Low Expansion material. The attachment point (P) for the sen-

sor is at a distance Lp lower compared to the height of the slit.

be affected by a temperature change due to the use of an ULE

material. Both slit displacements (∆d and ∆Lp) are generated

by the same temperature change (∆T ), which depends only on

the temperature of the sensor itself. The sensor is small and

has good thermal conductivity (148 WK−1m−1102,103), ensur-

ing a uniform temperature throughout the sensor, and there-

fore a robust cancellation mechanism. Fine tuning of the cor-

rection is achieved by changing the attachment distance Lp.

One can reduce Lp in order to keep an small detector by

increasing k, at the expense of having less sensitivity to grav-

ity. In other words, there would be a trade off between hav-

ing more sensitivity and having temperature insensitivity. In-

creasing k by a factor of 2, gives an Lp two times smaller,

at the price of having to integrate 4 times more to reach the

same precision. Fortunately, as we show in Section II A, these

sensors have shown very good sensitivity37, making it worth

while to sacrifice some of this sensitivity for stability. We

emphasize that the two compensation mechanisms that we

propose depend only on the sensor’s temperature, made out

of a single piece of silicon, rather than on the temperature

of two different pieces, making them robust compensation

mechanisms. Assembling the cantilever for the second strat-

egy might be quite challenging, but implementing the third

strategy seems within reach and requires carefully gluing the

components at the right height. The thermal expansion of the

ULE material must be small compared to that of silicon, the

material of the sensor. This is the case working within a few

degrees of the optimum temperature of the ULE material.



Three robust temperature-drift compensation strategies for a MEMS gravimeter 6

IV. CONCLUSIONS

Temperature variations cause the main limitation for the

long-term stability of MEMS gravimeters. They affect the

spring constant because of two reasons: due to the thermal

expansion that changes the dimensions of a particular design,

and from a thermal variation in the Young’s modulus. We pro-

pose three methods to reduce the temperature sensitivity. It is

suppressed for materials that fullfil the condition αE = −2α ,

that is, that the thermal expansion is canceled by the thermal

variation of the Young’s modulus. We present several materi-

als that meet this condition, reducing the sensitivity to temper-

ature variations. MEMS gravimeters are usually made out of

crystalline silicon, making it hard to use this previous strategy.

An alternative is to use the sensor’s own thermal expansion to

introduce a force that cancels the variation in the spring con-

stant due to temperature. Finally, we present a third alternative

that focus on the displacement of the mass, which is what the

sensor measures, rather than on the force. Adjusting the an-

choring point of the sensor, it is possible to introduce a thermal

expansion that compensates for the proof mass displacement

due to the change in the spring constant. All these proposals

are robust compensation mechanisms since they only depend

on the temperature of the sensor itself.
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Appendix A: Temperature variations from mechanical noise

In this Appendix we analyze the sensitivity limits due to the

temperature of the resonator, and the temperature variation ∆T

due to different mechanical noise sources. We ignore the dis-

sipation channels and assume that all that energy is converted

into heat. This determines how big the quality factor Qm must

be.

Thermomechanical noise gives a sensitivity limit for

MEMS gravimeters in thermal equilibrium. Applying a

stochastic force to the harmonic oscillator model described

in section II, results in a Brownian motion, which generates

the thermomechanical displacement noise. The Nyquist theo-

rem gives the thermal noise generated by a system in thermal

equilibrium. In analogy with electricity, the thermomechani-

cal force noise is104

〈F2〉= 4kBT
mωm

Qm

B, (A1)

where kB is the Boltzmann constant, and B is the bandwidth.

The thermomechanical acceleration noise is

〈ath〉=
√

〈F2〉
m2

=

√
4kBT

ωm

mQm

B. (A2)

In the case of MEMS gravimeters based on a quasi-zero

stiffness design, the theoretical acceleration noise floor at

room temperature goes from 0.5 µGal/
√

Hz35 up to 0.08

µGal/
√

Hz37, which shows that sensitivity is not a limitation

for a MEMS gravimeter. The last formula indicates that low

frequency and high mechanical quality factors are always pre-

ferred. A DC gravimeter37 reaches a sensitivity of about 1

µGal with Qm > 200, which is not too demanding.

We now calculate the temperature variations ∆T due to me-

chanical noise sources. The power can be written as

P =
d

dt
(K +U)+ γm

(
dz

dt

)2

, (A3)

where K = 1
2
m(dz/dt)2

and U = 1
2
mω2

mz2 are the kinetic

and the potential energy, respectively (the energy stored

in the oscillation) and the last term gives the dissipa-

tion. Assuming a sinusoidal driven force Fext = F0 cos(ωt),
the general solution is z(t) = z0 cos(ωt + δz) where z0 =

F0/m√
(ω2

m−ω2)
2
+(ωmω/Qm)

2
(3) and δz = arctan

(
ω2

m−ω2

ωmω/Qm

)
− π

2
. In

steady state d
dt
〈K +U〉 = 0, and the last term in Eq. (A3)

gives the energy that is dissipated into heat

〈P〉=
〈

γm

(
dz

dt

)2
〉

=
1

2
m

ωmω2

Qm

z2
0, (A4)

The temperature change ∆T per unit time ∆t is

∆T

∆t
=

〈P〉
mc(T )

=
1

2c(T )

ωmω2

Qm

z2
0, (A5)

with c(T ) the specific heat capacity.

Under real conditions, some of the dominant mechanical

noise sources may be due to acoustic, building motion or rail-

road noise. The acoustic noise corresponds to the dominant

contribution, giving a heating rate below 5× 10−4 K/s taking

silicon (c(T ) = 710 J/kg · K at a pressure of 1 Pa105) with a

conservative mechanical quality factor of 1200 and a funda-

mental vibration frequency of 3 Hz37. A temperature stabi-

lization of about 1 mK should be enough to overcome most of

the above heating mechanisms.

Appendix B: Thimoshenko Beam Theory

The EBBT of flexural motion has been known to be in-

adequate for higher modes or when the effect of the cross-

sectional dimensions cannot be neglected. For those cases,

the TBT includes the effect of rotatory inertia and transverse-

shear deformation. The coupled equations are106

EI
∂ 2φ

∂x2
−KAG

(
∂v

∂x
+φ

)
−ρI

∂ 2φ

∂ t2
= 0, (B1)



Three robust temperature-drift compensation strategies for a MEMS gravimeter 7

KAG

(
∂ 2v

∂x2
+

∂φ

∂x

)
−ρA

∂ 2v

∂ t2
= 0, (B2)

with G and E the shear and Young’s modulus, K, A and I

the shear coefficient, area, and moment of inertia of the beam

cross-section respectively, v the transversal displacement and

φ the cross-section rotation. Combining Eqs. (B1) and (B2)

gives107

EI
∂ 2v

∂x4
−ρI

(
1+

E

KG

)
∂ 4v

∂x2∂ t2
+ρA

∂ 2v

∂ t2
+

ρ2I

KG

∂ 2v

∂ t4
= 0. (B3)

Similarly, an equation for φ can be obtained.

Writing

v(x, t) =V (x)eiωt , φ(x, t) = Φ(x)eiωt , (B4)

gives

∂ 4V

∂x4
+

ρω2

E

(
1+

E

KG

)
∂ 2V

∂x2
+

ρω2

E

(
ρω2

KG
− A

I

)
V = 0. (B5)

The solutions has the form V (x) = eλ ⋆x with

λ ⋆2
+ ,λ ⋆2

− = −ρω2

2E

(
1+

E

KG

)

±

√
ρ2ω4

4E2

(
1− E

KG

)2

+
ρω2A

EI
, (B6)

which is related to the resonant frequencies for a given par-

ticular beam shape and boundary condition. In particular for

a rectangular cross-section and a doubly-clamped beam, we

have K = 2(1+ν)
4+3ν

108, I
A
= t2

12
and G= E

2(1+ν)
109. The frequency

analysis is divided into two cases with respect to the transition

frequency ω̃2 = KGA
ρI

, which is the value where λ ⋆2
+ changes

from positive to negative (λ ⋆2
− is always negative).

For the existence of non-trivial solutions, the following

transcendental equation must be satisfied

2(1− cosh(λ1L)cos(λ2L))±
λ1λ2

α1α2

(
α2

2

λ 2
2

∓ α2
1

λ 2
1

)
sinh(λ1L) sin(λ2L) = 0, (B7)

where the upper and lower signs are for ω2 < ω̃2 and ω2 > ω̃2

respectively, and we have the real numbers

λ1 =




+
√
+λ ⋆2

1 > 0 for ω2 < ω̃2

+
√
−λ ⋆2

1 > 0 for ω2 > ω̃2

λ2 =+

√
−λ ⋆2

2 > 0 (B8)

FIG. 5. Natural frequencies of a doubly-campled beam from the

EBBT (solid blue), TBT (solid red) and finite element simulations

(FEM, green square markers) for an aspect ratio of a) L/t = 10 and

b) L/t = 66.

TABLE II. Room temperature properties of single crystalline silicon

(100).

Property Value

Density111 2330 kg/m3

Young´s modulus112,113 130×109 Pa

Thermal conductivity102,103 148 W/(m · K)

Poisson ratio112 0.28

CTE114,115 2.56×10−6 1/K

Specific heat capacity116 702 J/(kg · K)

and

α1 =

{
ρω2

KG
+λ 2

1 for ω2 < ω̃2,
ρω2

KG
−λ 2

1 for ω2 > ω̃2,

α2 =
ρω2

KG
−λ 2

2 . (B9)

Figure 5 shows that for high aspect ratios, the EBBT and TBT

almost gives the same result for the lower vibration modes.

For small aspect ratios, EBBT and TBT start to deviate from

each other, but EBBT still gives a similar result to TBT and the

finite element simulations (FEM) for the fundamental mode

with deviations below 1%.

Appendix C: Temperature dependence of silicon properties

We consider the use of single crystalline silicon (100) for

the MEMS gravimeter. Table II lists some of its properties

at room temperature. The variations of the CTE and Young’s

modulus with temperature have been extensively studied for

crystalline silicon110. In this Appendix we model the depen-

dence of α and αE with temperature.

1. Linear coefficient of thermal expansion, α

The linear coefficient of thermal expansion α , at some tem-

perature T , is defined as the change in length L(T ) with re-

spect to the length L0 at some fixed temperature T0, usually
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taken as the room temperature T0 = 293.15 K117

α =
d(lnL)

dT
≈ 1

L0

dL

dT
. (C1)

The approximate Eq. (4) works very well because usually

L/L0 − 1 is very small for all temperatures. In all cubic crys-

tals α is a scalar, independent of the direction95,117. In single-

crystal silicon a 5th order polynomial (dashed gray line in Fig.

6) gives a good fit to the experimental data (hollow red dia-

monds) in the range from 293 K to 1000 K95,118, that is

α (T )

10−6K−1
= a0 + a1T + a2T 2 + a3T 3 + a4T 4

+a5T 5, (C2)

where a0 = −3.0451, a1 = 0.035705, a2 = −7.981× 10−5,

a3 = 9.5783×10−8, a4 =−5.8919×10−11 and a5 = 1.4614×
10−14. This fit does not work well for T ≤ T0. A good fit to

the data in range from 0 K to 600 K (hollow green squares in

Fig. 6) is given by a more complicated expression for (solid

black line)119–122:

α (T )

10−6K−1
=

(
b0T 3 +

(
b1T 5 + b2T 5.5 + b3T 6 + b4T 6.5 + b5T 7

)(1+ erf(T1)

2

))(
1− erf(0.2T2)

2

)

+

((
−b6 + b7T 2

3 + b8T 3
3 + b9T 9

3

)(1+ erf(0.2T2)

2

))(
1− erf(0.1T4)

2

)

+

(
b10 +

b11

T
+

b12

T 2
+

b13

T 3

)(
1+ erf(0.1T4)

2

)
, (C3)

FIG. 6. Compilation of experimental data taken by other groups

for α(T ) for T > T0 (hollow red diamonds) fitted by Eq. (C2)

(dashed gray line)95, and for the full temperature range (hollow green

squares)120 fitted by Eq. (C3) (black solid line)119,122.

where b0 = 4.8×10−5, b1 = 1.00500×10−5, b1 = 1.00500×
10−5, b2 = −5.99688× 10−6, b3 = 1.25574× 10−6, b4 =
−1.12086× 10−7, b5 = 3.63225× 10−9, b6 = −47.6, b7 =
2.67708 × 10−2, b8 = −1.22829 × 10−4, b9 = 1.62544 ×
10−18, b10 = 4.72374× 102, b11 = −3.58796× 104, b12 =
−1.24191× 107, b13 = 1.25972× 109, T1 = T − 15, T2 =
T − 52, T3 = T − 76 and T4 = T − 200.

For small variations around room temperature T0 a linear

approximation is good enough

α(T ) = α0 + 2α1(T −T0), (C4)

with α0 = 2.5554×10−6 K−1 and α1 = 4.58×10−9 K−2 (Fig.

7). This approximation has been verified experimentally from

FIG. 7. Compilation of experimental data taken by other groups for

α(T ) around T0
123,125 and linear fit by Eq. (C4).

285.15 K to 301.15 K115,123–125 (hollow blue triangles and

hollow green squares in Fig. 7). The deviation from linearity

gives a relative error on α of around 10 ppm123.

2. Young’s modulus temperature coefficient αE

When an isotropic solid beam of length L is loaded in pure

tension, the tensile stress vector is given by σ and the longi-

tudinal strain vector is approximately ε ∼ ∆L/L, with ∆L the

length increase. Hooke’s Law states that114

ε = sσ , (C5)

where s = 1/c is the elastic compliance constant and c the

elastic stiffness constant or Young’s modulus E .
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The compliance si j with {i, j} = 1,2, ...,6 is a matrix. For

anisotropic materials possessing a cubic crystal structure such

as silicon, the matrix si j contains three independent elastic

constants, s11, s12 and s44 from which the Young’s modulus

in any crystal direction [hkl] can be calculated as

1

Ehkl

= ś11 = s11 − 2

(
s11 − s12 −

1

2
s44

)

×
(
l2
1 l2

2 + l2
2 l2

3 + l2
3 l2

1

)
, (C6)

where li are the direction cosines along the axis126,127. Usu-

ally, experimental data is given for ci j, instead si j, and their

relations for silicon are

c11 =
s11 + s12

(s11 − s12)(s11 + 2s12)
,

c12 =
−s12

(s11 − s12) (s11 + 2s12)
, c44 =

1

(s44)
. (C7)

Using c11 = 165.5 GPa, c12 = 63.9 GPa and c44 = 79.5
GPa for silicon at room temperature127, we get s11 = 7.68×
10−12 Pa−1, s12 =−2.14×10−12 Pa−1 and s44 = 12.6×10−12

Pa−1128.

For a particular tension direction, E is defined as the ra-

tio of the longitudinal stress to the longitudinal strain, that is,

Ehkl = 1/s 1́1. For the case of tension applied in the [100]

direction, we have l1= cos(0) = 1, l2= cos(π/2) = 0 and

l3= cos(π/2) = 0, then E100 = 1/s11 = 130 GPa113, the min-

imum value for silicon. For the [110] direction, i.e., the direc-

tion parallel to the major flat of a (100) wafer, the cosines are

l1 = cos(π/2) = 0, l2 = cos(π/4) = 1/
√

2, l3 = cos(3π/4) =

−1/
√

2, then E110 = 169 GPa113.

The temperature dependence of the Young’s modulus (αE )

should be given by the thermoelastic theory, but it is hard to

obtain from a simple model over a wide temperature range.

However, it possible to use a semi-empirical formula129

E(T ) = ET=0 −BT exp

(
−Tr

T

)
, (C8)

with ET=0 the value of Young’s modulus at absolute zero tem-

perature, and Tr > 0 (related to the Debye temperature) and

B > 0 two constants. Their values for silicon are obtained

experimentally to be ET=0 = 167.5 GPa, Tr = 317 K and

B = 15.8 MPa/K96.

Using (5) and (C8), we have

αE(T ) =
1+ Tr

T

T − ET=0
B

exp
(

Tr
T

) . (C9)

The variation of E(T ) around room temperature is very lin-

ear, giving an almost constant αE , with an average value for

silicon in the temperature range 200− 300 K of αE = −52.6
ppm/K96.
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