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Abstract
In northern Sinaloa state, Mexico, little is known on organophosphate pesticide transport and fate in agricultural drainage 
systems. Spatial and temporal variation of chlorpyrifos and dimethoate was assessed in two agricultural drainage ditches 
(Buenaventura and Burrión) and risk for aquatic life was estimated. Analysis was made by high performance liquid chroma-
tography and risk estimates were determined following international reference frameworks. In water, the highest chlorpyrifos 
concentration in the Buenaventura ditch was 5.49 µg L−1, and 3.43 µg L−1 in the Burrión ditch. Dimethoate was quantified 
only once in both ditches (0.44 µg L−1 and 0.49 µg L−1). In sediment, chlorpyrifos was quantified only in the Burrión ditch 
(242 µg kg−1). Chlorpyrifos concentrations surpassed water and sediment quality criteria, representing a hazard for envi-
ronmental and human health, as both ditches discharge into the Gulf of California and are used for capture of commercial 
species such as the grey mullet (Mugil cephalus) and cauque prawn (Macrobrachium americanum).
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The Sinaloa state is one of the main vegetables and grain 
producers in Mexico. The most developed crops are maize, 
bean, potato, chickpea, safflower, wheat, sorghum, and veg-
etables (SIAP 2019). This region is distinctive for its highly 
technical agricultural practices and the presence of two agri-
cultural cycles per year. Such agricultural practices include 
the use of pesticides for pest control and prevention. Mar-
tínez-Valenzuela et al. (2015), as well as Hernández-Antonio 

and Hansen (2011) point out that the most commonly used 
pesticide group in the northern region of the state is organ-
ophosphates, with chlorpyrifos, dimethoate, malathion, 
monocrotophos, and methyl parathion the most frequently 
applied. These pesticides vary in toxicity, from moderately 
toxic to extremely toxic to humans and wildlife, and dif-
ficult to degrade under natural environmental conditions 
(Nasrabadi et al. 2010). Chlorpyrifos and dimethoate are 
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used in Sinaloa for pest control in grain and vegetable crops 
(Leyva-Morales et al. 2014). Both compounds are in Toxic-
ity Group III; chlorpyrifos exhibits a high affinity to soil and 
sediment components, whereas dimethoate is highly water-
soluble (INECC 2021a, b). Karam et al. (2004) point out that 
most pesticides used in the Sinaloa state have teratogenic 
action and affect the nervous, endocrine, and immunologi-
cal systems, being considered potential generators of dis-
eases such as cancer, asthma, and infertility. In this regard, 
improper pesticide use has been reported to imply a negative 
effect on the human being and the ecosystem, causing health 
problems and environmental deterioration (Benítez-Díaz 
and Miranda-Contreras 2013; Plenge-Tellechea et al. 2007). 
Pesticides migrate from crop terrains via adhesion to soil 
particles to agricultural drainages ditches, allowing them to 
move into aquatic ecosystems (Gebremariam et al. 2012). In 
the Sinaloa state, pesticide assessment in agricultural drain-
age ditches has found concentrations from a wide variety 
of chemicals (García de la Parra et al. 2012; Moeder et al. 
2017). Most studies of organophosphate pesticides in agri-
cultural drainage ditches have been performed in the central 
part of the state, and little is known on the movement and 
fate of these compounds in agricultural drainage systems in 
northern Sinaloa. Corn, beans, and chickpea are grown in 
this highly technified region; it is located within two of the 
largest irrigation districts (ID) in Mexico, ID 063 and ID 075 
(CONAGUA 2018).This study aims to assess the spatial and 
temporal variation of chlorpyrifos and dimethoate, as well 
as estimate environmental risks for water, sediments and 
aquatic life in two agricultural drainage ditches located on 
ID 063 and ID 075 in Sinaloa, Mexico.

Materials and Methods

The study area comprises the lower part of the ditches Bue-
naventura and Burrión, both in agricultural areas of northern 
Sinaloa state, northwestern Mexico. The Buenaventura ditch 
is in the ID 075, in the lower part of the El Fuerte River 
basin. The Burrión ditch is in the ID 063, in the lower part of 
the Sinaloa River basin. The length and width of both drain-
age ditches is approximately 35 km and 10 m, respectively, 
and both discharge into the Gulf of California (Fig. 1).

Water temperature and pH were measured in July and 
November 2018, as well as in February and June of 2019. 
Measurements were made in four sampling stations with a 
multiparameter probe (YSI Professional Plus, Ohio, USA). 
Water samples for chlorpyrifos and dimethoate analysis were 
collected in 1 L amber glass bottles, from the first 20 cm 
of the water column, in the middle of the drainage ditch. 
Samples were stored at 4°C until analysis. Duplicates were 
made for quality control. Sediment samples from the upper 
10 cm of the ditch bottom were taken and stored in glass 
containers and kept frozen for analysis (USEPA 1992). Prior 
to analysis, sediment samples were dried at 60°C and sieved 
with ≤ 2 mm sieve. Organic matter (OM) content in sediment 
was determined by the Walkley and Black (1934) method.

Extraction and analysis of chlorpyrifos and dimethoate 
in surface water followed method 614.1 of the US Envi-
ronmental Protection Agency (USEPA 1992). One liter of 
water was poured into a 2 L separation funnel and 40 mL 
of methylene chloride were added; the funnel was shaken 
for 1 min. The funnel was allowed to stand for about 5 min 

Fig. 1   Location of sampling 
stations within drainage ditches 
Buenaventura and Burrión
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so that there was phase separation. The methylene chloride 
extract was collected in an Erlenmeyer flask. This process 
was repeated twice more. The extract was filtered through 
a 0.45 µm nylon membrane and evaporated in a rotatory 
evaporator at 45 ± 2°C in the vacuum. Once the extract 
was dried, it was resuspended in 1.5 mL of methanol and 
transferred to a 2 mL vial. For sediments, chlorpyrifos and 
dimethoate were extracted following the method described 
by Masís et al. (2008). Three extractions were performed 
at room temperature, with 25 g of sediment and 40 mL of 
methylene chloride and ultrasonic extraction for 15 min. 
The extract was filtered through a 0.45 µm nylon membrane. 
This fraction was evaporated and resuspended with 1.5 mL 
of methanol. Analysis was made by high performance liquid 
chromatography with UV–Vis detector (Shimadzu, model 
Prominence) and Kromasil C18 250 × 4.6 mm column. For 
the chromatographic analysis of chlorpyrifos, the mobile-
phase was a mixture of water–methanol 20:80 (v/v) at a 
flow rate of 1 mL  min−1. Injection volume was 20 µL, 
and the column oven was set at 40°C. For dimethoate, the 
mobile-phase was a mixture of water–methanol 60:40 (v/v) 
at a flow rate of 1 mL min−1. Injection volume was 20 µL, 
and the column oven was set at 35°C. Chlorpyrifos and 
dimethoate were detected at 247 nm and 220 nm, respec-
tively. Compound identification was made from their reten-
tion times and quantification was based on peak height and 
area, as well as on comparison with reference standards 
(chlorpyrifos and dimethoate 99.5% and 98.3%, respec-
tively; Chem Service, Inc.). Detection and quantification 
limits for chlorpyrifos were 0.054 and 0.153 µg L−1, respec-
tively. For dimethoate, the detection limit was 0.171 and 
quantification limit was 0.519 µg L−1. Recovery of chlor-
pyrifos and dimethoate ranged from 89% to 105%.

Due to the lack of a framework of reference in Mex-
ico, international frameworks of reference were used to 
assess aquatic life protection risks due to chlorpyrifos 
and dimethoate. For chlorpyrifos in water, the reference 
frameworks of the USEPA (1986) and the Canadian Coun-
cil of Ministers of the Environment (CCME 2008) were 
used. For dimethoate in water, the reference framework 
used was that of the CCME (1993). Criteria established 
by Simpson et al. (2005) were used for determination of 
sediment quality for aquatic life protection. Shapiro–Wilk 
tests were performed to assess the normality of data and 
Duncan multiple range test was used to compare pesticide 
concentrations between ditches (p ≤ 0.05).

Results and Discussion

In water, chlorpyrifos had the highest percent incidence in 
both Buenaventura and Burrión ditches, with 56.3% and 
50.0%, respectively. Incidence of dimethoate was 6.25% 

in both ditches. In sediment, only chlorpyrifos was quan-
tified in 25% of samples analyzed in the Burrión ditch. 
The highest concentrations in water were those of chlor-
pyrifos. In the Buenaventura ditch, chlorpyrifos ranged 
from 0.43 ± 0.20 to 5.49 ± 0.29 µg L−1, whereas in the Bur-
rión ditch, concentrations were between 0.70 ± 0.22 and 
3.43 ± 0.69 µg L−1. Dimethoate was quantified only once 
in both ditches. In the Buenaventura ditch, dimethoate 
concentration was 0.44 ± 0.11 µg L−1 and in the Burrión 
was 0.49 ± 0.08 µg L−1. Only in sediments of the Burrión 
ditch chlorpyrifos was quantified, ranging from 151 ± 6.4 
to 242 ± 17 µg kg−1.

The highest average concentrations of chlorpyrifos and 
dimethoate (2.63 µg L−1 and 0.44 µg L−1, respectively) 
were observed on February 2019, in waters of the Bue-
naventura ditch. This coincides with the period of high-
est agricultural activity in the ID 075. In the Burrión 
ditch, the highest average concentration of chlorpyrifos 
(2.66 µg L−1) was observed in June of 2019, whereas the 
highest concentration of dimethoate (0.49 µg L−1) was 
found in February of the same year. It is worth noting 
that the greatest application of pesticides in the main 
crops (maize, bean, and chickpea) within the study area 
coincides with the time where the highest chlorpyrifos 
concentrations were measured in both ditches. It also 
coincides with the irrigation season (February to May) of 
maize, the most extensive crop in the region, thus allow-
ing pesticides to mobilize within irrigation surplus into 
agricultural drainage ditches. Dimethoate is highly solu-
ble in water, whereas chlorpyrifos has a high adsorption 
affinity to soil particles and suspended particulate matter, 
which are transported within effluents (Gebremariam et al. 
2012). The higher concentration of chlorpyrifos in June 
in the Burrión ditch was probably because the water level 
in the drain decreased in June (González-Márquez et al. 
2014). Low water levels could have favored concentra-
tion increase within the drainage ditch. Monthly pesticide 
concentrations are shown in Table 1.

In the Buenaventura ditch, sampling station one had 
the greatest chlorpyrifos concentration (2.96 µg  L−1), 
whereas in the Burrión ditch the greatest concentra-
tion (3.43 µg  L−1) was found in sampling station four. 
Dimethoate was quantified in the same sampling stations 
of both ditches, with 0.44 µg L−1 in the Buenaventura ditch 
and 0.49 µg L−1 in the Burrión ditch. Only at the Burrión 
ditch sampling station one, located closest to the coastline, 
was chlorpyrifos quantified during the four samples. This 
indicates that there is a constant input of pesticide, either 
dissolved or adsorbed to particulate matter, into the lower 
part of the drain. In sediment, chlorpyrifos was only meas-
ured in the Burrión ditch, with an average concentration of 
172 µg kg−1 in sampling station one and 97.8 µg kg−1 in 
sampling station two. The lack of detection of chlorpyrifos 
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in sediments of the Buenaventura ditch is probably related 
to OM content (Al-Ghadban et al. 1994), which was 43% 
lower compared to drainage Burrión. Average OM content 
in sediment was 1.71% ± 0.5% in drainage Buenaventura 
and 3.03% ± 0.3% in the Burrión ditch. Prevailing temper-
ature (25° ± 2.5°) and pH (7.6 ± 0.5) in both ditches might 
have influenced chlorpyrifos degradation in sediments, as 
these conditions are favorable for microbial growth and 
physicochemical processes controlling transformation of 
chlorpyrifos, such as oxide-reduction and hydrolysis reac-
tions (Getzin 1985; Macalady and Wolfe 1985).

When considering criteria for aquatic life protection, all 
samples where chlorpyrifos was quantified exceeded the cri-
teria established both by USEPA (0.041 µg L−1) and CCME 
(0.002 µg L−1) protection guidelines. Therefore, such con-
centrations represent a risk for insects, crustaceans, and fish 
in both ditches and for the bays where they discharge. Tagatz 
et al. (1982) reported changes in marine plankton composi-
tion at chlorpyrifos concentrations greater than 0.1 µg L−1. 
This is dangerous for seawater ecosystems, due to its impact 
on individual species and organism communities. In waters 
of the Lechuguilla and Navachiste bays, located in northern 
Sinaloa, Arellano-Aguilar et al. (2017) reported chlorpyri-
fos concentrations of 1.71 and 1.70 µg L−1, respectively. In 
the Altata-Pabellones coastal lagoon, located in the central 
part of the state, Carvalho et al. (2002) revealed maximum 
concentrations of chlorpyrifos and dimethoate of 0.0048 and 
0.021 µg L−1, respectively; these authors found the highest 
concentration during the dry season, coinciding with the find-
ings of this study. Moeder et al. (2017) described the presence 
of chlorpyrifos (0.082 µg L−1) and dimethoate (0.413 µg L−1) 
in surface waters of the agricultural ditch “La Michoacana” in 
the municipality of Culiacán, Sinaloa. García de la Parra et al. 

(2012) reported the presence of chlorpyrifos in sediments of 
an agricultural ditch in the Culiacán Valley (0.0009 µg kg−1).

Moeder et al. (2017) point out that despite the semi-polar 
nature of chlorpyrifos, only marginal concentrations have been 
found in sediments due to its short half-life at the water–sedi-
ment interphase, which does not favor accumulation. Previ-
ously reported chlorpyrifos concentrations are not similar to 
those reported in this research. This difference may be due to 
variations in agricultural activities in the study area, as well as 
the types of crops established and pesticides used. Dimethoate 
concentrations found in the water of both ditches are below the 
criteria of 6.2 µg L−1 established by CCME (1993).

Pesticide concentrations in sediment were compared 
with the criteria of sediment quality for aquatic life pro-
tection established by Simpson et al. (2005). This criterion 
establishes a maximum permitted limit of 100 µg kg−1 for 
organophosphate pesticides. Chlorpyrifos was observed 
only in sediments of the Burrión ditch, with concentrations 
always greater than the reference limit in every month and 
station it was quantified. Results of this work indicate that 
migration of sediments with high chlorpyrifos concentra-
tions might be a short- and long-term threat for aquatic 
ecosystems adjacent to the sites where the studied ditches 
discharge. Measurement of chlorpyrifos and dimethoate in 
the study area indicates the recent use and application of 
these compounds. Concentrations of chlorpyrifos in water 
did not show significative differences (p ≤ 0.05) between the 
two ditches, which can be related to the similarity in crop 
types and agricultural cycles. Chlorpyrifos deserves most 
attention, according to its prevalence and concentration. 
However, both compounds may represent potential threats 
to adjacent aquatic ecosystems, as the acute toxic concen-
tration for the most sensitive species is 0.001 µg kg−1. It is 

Table 1   Chlorpyrifos and 
dimethoate in water (µg L−1) 
and sediment (µg kg−1) samples 
of Buenaventura and Burrión 
ditches (monthly averages)

a One value
b Mean of two values
c Mean of three values
d Mean of four values
e Above criteria for aquatic life protection: chlorpyrifos 0.041 µg L−1 (USEPA 1986), 0.002 µg L−1 (CCME 
2008); Dimethoate 6.2 µg L−1 (CCME 1993)
f Above sediment quality criteria for aquatic life protection: chlorpyrifos 100  µg  kg−1, dimethoate 
100 µg kg−1 (Simpson et al. 2005)
C Chlorpyrifos, D Dimethoate, Nd Not detected

Month Buenaventura ditch Burrión ditch

Water (µg L−1) Sediment 
(µg kg−1)

Water (µg L−1) Sediment (µg kg−1)

C D C D C D C D

July 2018 Ndd Nd Nd Nd 2.14a,e Nd Nd Nd
November 2018 0.93 ± 0.30e Nd Nd Nd 0.97 ± 0.30c,e Nd Nd Nd
February 2019 2.63 ± 2.47c,e 0.44a Nd Nd 2.39a,e 0.49a 218 ± 25.2b,f Nd
June 2019 1.05 ± 0.13b,e Nd Nd Nd 2.66 ± 1.11c,e Nd 151.8 ± 0.8b,f Nd
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important to point out that dimethoate levels were below 
the reference limits for protection of aquatic life. However, 
it should not be present in the natural environment at all. 
This study evidences the frequent presence of chlorpyrifos 
in water and sediments of two ditches in agricultural areas 
of northern Sinaloa state, Mexico. The presence of these 
pesticides implies that monitoring is essential to understand 
their transport, environmental fate, effects on ecosystems, 
and effects on public health, as both ditches are used to catch 
commercial species such as the grey mullet (Mugil cephalus) 
and cauque prawn (Macrobrachium americanum).
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