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h i g h l i g h t s

• Fluid–porous medium interfaces exhibit sharp geometric and diffusion transitions.
• Brownian dynamics simulations were used for studying the diffusion.
• Asymmetrical diffusion across the interface was detected.
• Asymmetries are explained by the advection-like effects at the interface.
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a b s t r a c t

Interfaces formed by a homogeneous fluid and a porous media are commonly found in
nature and applications. This work uses Brownian motion simulations for exploring the
effects of the interface in the diffusion transport of passive particles. The results revealed
that the diffusion transport is asymmetric in the sense that particles migrate faster in the
porous medium-to-homogeneous fluid interface than in the opposite direction. Besides,
such asymmetry is stronger as the porosity decreases. Macroscopic model using volume
averaging methods showed that the asymmetrical diffusion effect is induced by sharp
transitions in porosity and effective diffusivity in a vicinity of the interface.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Many natural and practical systems with diffusive mass transport are formed by a homogeneous fluid region and an
adjacent porous medium saturated by the same fluid [1]. Examples of this class of configurations are filtration processes,
ground water pollution, drying processes, separation membranes, transport in biological tissues, among many others. In
general, the transport properties at the fluid bulk are well understood and diverse theoretical and experimental schemes
are available nowadays. On the other hand, important efforts have been devoted to the experimental [2–4] and theoretical
[5–8] determination of effective diffusivities for homogeneous porous media. However, the description of the diffusion of
particles around the fluid–porousmedium inter-region has received less attention due to the difficulty of understanding the
geometrical effects of the transition region on the effective transport parameters. In particular, sharp variations of the porous
medium properties (e.g., porosity) and transport parameters (e.g., diffusivity) around the fluid–porousmedium inter-region
hamper the derivation of models describing the macroscopic diffusion phenomenon.

Experimental results describing the diffusion transport across fluid–porous medium interfaces are scarce. Recent
experimental results have shown evidence of asymmetrical dispersive transport of conservative tracers across interfaces
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Fig. 1. Schematic diagram of the transport system. The porous medium is represented by circular obstacles with non-overlapping configuration.

between different porous materials [9,10]. Breakthrough curves showed that tracers migrating from fine medium to coarse
medium arrive significantly faster than those in the opposite direction. On the other hand, some results regarding the
macroscopic modeling have been reported in the recent years. The one-domain approach considers the porous medium
as a continuum with effective transport coefficients, and the transition from the fluid to the porous medium is achieved
through a continuous transition of properties, such as diffusivity and porosity [11]. In contrast, the two-domain approach
describes the porous medium and the fluid according to the inherent properties of each region. Contrary to the one-domain
approach, a model matching problem to couple the transport in both homogeneous regions needs to be addressed, resulting
in the so-called jump boundary conditions [12]. These jump conditions often contain coefficients whose dependence of the
local geometry of the inter-region ismissing. To this end, some approximate approaches have been proposed [13]. In general,
the derivation of macroscopic models for describing diffusion between a porous medium and a homogeneous fluid is made
from volume averaging techniques [14], which leads to the formulation and solution of closure problems linked to effective
transport parameters.

The region between a porous medium and a homogeneous fluid commonly involves sharp geometric (e.g., porosity) and
transport (e.g., effective diffusivity) parameters. Despite the importance of such systems for natural and application systems,
studies describing the effects of sharp transitions in the diffusion transport of passive particles are still lacking. Motivated
by this, the aim of this work is two fold:

• To use Brownian random walk simulations for gaining insights in the effects of interfaces in the diffusion transport
of passive particles. In analogy to recent experiments for packed columns [9], breakthrough curves show that tracers
migrating from the porous medium to the homogeneous fluid arrive significantly faster than those in the opposite
direction.

• To formulate a macroscopic diffusion model accounting for asymmetrical diffusion across porous medium-fluid
interfaces. It is shown that asymmetrical transport can bemodeled as an advection-like phenomenon induced by porosity
and effective diffusivity transitions in the interface vicinity.

Overall, the results in this work indicate that transitions in the medium structure can lead to interesting transport effects
that can be exploited for applications (e.g., mass transport rectification).

2. Methods

2.1. System description

The system under consideration consists of a two-dimensional saturated porous medium and a homogeneous fluid.
The porous medium is composed by Nobs non-overlapping circular obstacles of radius R, randomly distributed in the right
segment. Fig. 1 presents a schematic description of the porous medium system. Tracers are allowed to move either from the
left to the right boundary or vice versa.
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For a porous medium with non-overlapping circular obstacle, like that in the right-hand side in Fig. 1, the computation
of porosity is an easy task. In fact, the porosity is given by

εf =
LxLy − NobsπR2

LxLy
. (1)

It is noted that Nobs/

LxLy


corresponds to the average number of obstacles per unit of area. In the next section, it will

be required to compute the statistical variations of the porous medium porosity along the x-direction. To this end, the
domain length Lx is divided into Nx vertical strips of width 1x = Lx/Nx. For each strip, the porosity should be computed
and averaged over Nconf porous medium configurations. For porosity computation, one should consider that only sections of
circular obstacles are retained within a given strip. In this way, an equation similar to Eq. (1) cannot be used. For addressing
this issue, one can take advantage of the rectangular geometry of the vertical strips for estimating porosity by means of
a two-dimensional, uncorrelated random sampling. This is done as follows: generate Mran pairs of uniformly distributed
random numbers


rx, ry


, with rx ∈ (x, x + 1x) and ry ∈


0, Ly


. The random pair


rx, ry


is used for sampling the strip with

respect to the sections of circular obstacles retainedwithin the stripwith left and right boundaries x and x+1x, respectively.
Let Mobs

ran < Mran be the number of random numbers hitting the sections of the circular obstacles located within the strip
considered. Then, an estimate of the porosity is given by

εf =
Mran − Mobs

ran

Mran
. (2)

For a sufficiently large value of Mran, the uniformly distributed pairs provides a good sampling of the obstacles contained
within the strip. For obtaining a statistically significant estimate of the porosity, the estimate given by Eq. (2) is averaged
over sufficiently large number, Nconf, of porous medium configurations. After trying some values for regular geometries
(e.g., complete circles and squares), it was noted that the values Mran = 107 and Nconf = 103 can provide accurate porosity
estimates.

2.2. Simulation of Brownian tracers

The diffusion transport is simulated by overdamped Brownian particles freely moving in the fluid and being reflected by
the obstacles. The overdamped dynamics of the particles is modeled by the Langevin equation

dr
dt

=


2D0ξ(t) (3)

where D0 is the bulk diffusivity, r = (x, y) and ξ(t) = (ξx(t), ξy(t)) are zero-mean white Gaussian noises with autocorrela-
tion functions


ξi(t), ξj(t ′)


= δijδ(t−t ′)with i, j = x, y. Thewell-knownMilstein algorithmwas used for numerical integra-

tion of Eq. (3). Stochastic averages were obtained as ensemble averages over 105 trajectories. The time step was set at 1t =

10−5, so that
√
2D01t ≪ 1. The valueD0 = 1was used for all numerical simulations. For simulating tracer particles crossing

thehomogeneous fluid–porousmediumsystem, initial conditions are uniformly distributed along the entry boundary, corre-
sponding to x = −Lx (resp., x = +Lx) for crossing from the homogeneous fluid to the porousmedium (resp., from the porous
medium to the homogeneous fluid). To this end, the entry boundary are set as reflecting, while the output boundary was
set as absorbing. The lower and upper boundaries located at y = 0 and y = Ly are also considered as reflecting boundaries.

The ratio of the crossing times between the two transport directions is considered as a diffusion asymmetry; namely,

α =
⟨THFPM⟩

⟨TPMHF⟩
(4)

where ⟨THFPM⟩ (resp., ⟨TPMHF⟩) is the mean crossing time for transport from the homogeneous fluid to the porous medium
(resp., from the porous medium to the homogeneous fluid) as computed for 105 tracers and averaged over 103 porous
medium configurations with the same porosity given by Eq. (1). In this way, the value α = 1 indicates that particles take
the same average time for crossing the system in the either direction.

3. Results and discussion

In the following, for a given homogeneous fluid–porousmedium configuration as described by Fig. 1, the average crossing
times in the HFPM and PMHF directions will be computed by means of the procedure described previously. In principle, the
obstacle radius R, and the horizontal Lx and vertical Ly lengths can affect the numerical simulation results. Since we are
interested in the transport along the axial direction, it suffices fixing a sufficiently large value of Ly for reducing boundary
effects. Numerical simulations for a large number of obstacle radius indicated that for Ly ≥ 5 the estimations are hardly
affected by the reflecting boundaries y = 0 and y = Ly. In this way, the length Ly = 5 was used for all simulations in the
sequel.
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Fig. 2. Breakthrough profile for both transport directions HFPM and PMHF. The HFPM breakthrough curve has a lower peak and is broader (more disperse)
than the corresponding PMHF breakthrough curve. The continuous curves are the best Gaussian fitting.

As a preliminary step, let us describe the behavior of the breakthrough curves for an illustrative example. Consider
the length Lx = 2, the porosity εf = 0.8 and the number of obstacles Nobs = 20. The corresponding obstacle radius is
R = 0.08. Fig. 2 presents the breakthrough profile for both transport directions HFPM and PMHF. These breakthrough
curveswere obtained as the distribution of the crossing times for 105 tracers and averaged over 103 randomporousmedium
configurations. Also, the crossing times are normalizedwith respect to the theoreticalmean crossing time for the non-porous
medium, which is given by T0 = L2T/2D0, where LT = 2Lx is the total length to be crossed by the tracers. The breakthrough
curves can be described as Gaussian distributions, which are represented by the continuous lines in Fig. 2. The HFPM
breakthrough curve has a lower peak and is broader (more disperse) than the corresponding PMHF breakthrough curve. This
suggests the presence of an important delay of the particles moving in the HFPM direction. In other words, tracers migrating
through the homogeneous fluid segment encounter an additional resistance for crossing the interface and entering the
porousmediumsegment. Hence, tracer accumulation at the interface causes a slow release into the porousmediumsegment,
leading to a time delay and a more disperse breakthrough curve. The profiles of averaged tracer concentration relative to
the fluid, denoted by cf , are presented in Fig. 3. These profiles were obtained by counting the number of times the particles
spend at a given horizontal position, and normalizing with respect to the number of tracers and with respect to the local
porosity. The above procedure was averaged over Nconf = 103 porous medium configurations. It is noted that the resident
concentration cf is continuous at the interface for both directions, indicating mass conservation relative to the continuous
phase (i.e., the saturating fluid) of the transport system. It should bepointed out that the average tracer concentration relative
to the whole space (i.e., including obstacles), denoted by c , is commonly used for experimental measurements [10]. These
average concentrations are related by c = εf cf . Given the configuration of the transport systemwith sharp porosity change
at the interface, it is very likely that experimental measurements of resident tracer concentration exhibit a discontinuity
at sharp interfaces. However, by referring the concentration to the saturating fluid, the tracer concentration is in line with
mass conservation arguments.

The effects of the radius R and the horizontal length Lx in the transport asymmetry with respect to the porous medium
porosity were evaluated. For constant length Lx = 5 and four different values of the average number of obstacles per unit of
area (i.e., Nobs/(LxLy)), Fig. 4(a) presents the behavior of the transport asymmetry with respect to the porosity. Recall that,
for a given porosity εf , the relation between number of obstacles and radius is given by Eq. (1). The transport asymmetry
exhibits a monotonous decreasing behavior with respect to the porosity. As more obstacles are placed within the porous
medium segment, the transport asymmetry shows a slight increase for smaller porosity values. This means that tracers
find increased resistance when moving in the HFPM direction than in the PMHF direction. This effect can be explained by
an increase of tortuosity as an increasing number of obstacles are placed within the porous medium. As expected, in the
limit as the porosity εf → 1 (no obstacles in the right segment), the transport asymmetry vanishes (i.e., α → 1). For
Nobs/


LxLy


= 3, Fig. 4(b) shows that the system length Lx has only a marginal effect in the transport asymmetry. In fact, the

transport asymmetry α remains practically invariant when the axial length is increased, suggesting that the interface is the
responsible of the differences of directional diffusion of tracers.

The numerical results in Fig. 4 indicate that, regardless the porous medium configuration, the transport of particles
across the interface involving the homogeneous fluid and the porous medium is asymmetric. It is apparent that particles
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Fig. 3. Profiles of averaged tracer concentration relative to the saturating fluid, cf .

Fig. 4. Transport asymmetry with respect to the porosity as affected by (a) the number of obstacles, and (b) the axial system length. The asymmetry is
higher as the porosity is decreased.



J. Alvarez-Ramirez et al. / Physica A 407 (2014) 24–32 29

are subjected to an additional resistance when approaching the interface from the homogeneous fluid segment. The
previous results have shown that heterogeneous systems with subdomains having different diffusion properties can induce
asymmetries in the transport of tracers. That is, tracers move faster in some directions where trajectories find reduced
resistance [15–18]. It has been shown that heterogeneous interfaces can induce an apparent drift (advection-like) effect,
which can be exploited for rectification of diffusive particles [17,18].

3.1. Macroscopic modeling

Given the results described above, an interesting question is how to account for the transport asymmetry in the
macroscopic modeling of the diffusion phenomenon described above. For addressing this question, the up-scaling results
for diffusion in porous media described in Ref. [11] will be considered. The approach departs from considering an averaging
volume, say V , for an arbitrary location of a general porous medium where diffusion transport is taking place. The use of
the transport theorem [14] and the solution of a closure problem for concentration departures with respect to averaged
concentrations lead to the following diffusion equation valid everywhere in the system domain:

εf (r)
∂cf
∂t

= ∇ ·

εf (r)Deff(r) · ∇cf


(5)

where r is the vector of spatial coordinates within the transport system, and Deff(r) is the effective diffusivity tensor, which
can be obtained from the solution of a Laplace problem for some closure variables. The reader is referred to Refs. [11,14] for
details of the derivation of Eq. (5). Basically, Eq. (5) describes the behavior of the averaged concentration for scales larger
than the porous characteristic scale (i.e., the average porous diameter). For an isotropic homogeneous porousmediumwhere
the porosity ε(r) is nearly constant, one has that Eq. (5) becomes a standard diffusion equation for macroscopic scales, i.e.,
∂cf
∂t = Deff∇

2cf .
In principle, one should consider the horizontal and vertical coordinates in Eq. (5) for describing the transport of tracers

within the system described in Fig. 1. However, by imposing reflecting conditions at the upper and lower boundaries, it is
expected that uncorrelated vertical displacements have no effects in the transport asymmetry along the axial coordinate. In
this way, let us only consider the x-component of the effective diffusion tensor for obtaining the behavior of the up-scaled
concentration along the axial coordinate. By doing this, one obtains the following equation constrained to the x-coordinate:

εf (x)
∂cf
∂t

=
∂

∂x


εf (x)Deff(x)

∂cf
∂x


. (6)

Eq. (6) resembles the structure of the generalized Fick-Jacobs equation describing the diffusion in a symmetric channel of
varying width w(x). The Fick-Jacobs equation is obtained by projecting the higher-dimensional diffusion equations in one
dimension measured along the centerline of the channel [19–21]. This procedure gives the following expression for the
projected concentration c:

∂c
∂t

=
∂

∂x


w(x)Deff(x)

∂

∂x


c

w(x)


. (7)

This equation shares the same structure with Eq. (6) if one uses the projected concentration relative to the saturating fluid
in the channel; namely, cf = c/w(x). This leads to the following expression:

w(x)
∂cf
∂t

=
∂

∂x


w(x)Deff(x)

∂cf
∂x


. (8)

In this way, the channel widthw(x) plays the role of the pointwise porosity εf (x). This similarity is not surprising at all since,
for a maximum channel width taken as a reference value, w(x)/w∗ is the pointwise fraction of the saturating fluid within
the channel. The main difference between Eqs. (6) and (8) is that in the former model the pointwise effective diffusivity
Deff(x) is estimated by solving a closure problem for a unit cell obtained from a spatial averaging problem [14], while in the
latter model the effective diffusivity arises from solving the projection problem [19–21].

Estimates of spatial porosity variations can be obtained from, e.g., image processing methods. On the other hand, rather
than having a direct expression forDeff(x), one dispose of an expression of the effective diffusivity as a function of the porous
medium porosity; that is, Deff(εf (x)). Fig. 5 exhibits the estimated variations of the effective diffusivity as a function of the
porosity, for four different values of the average number of obstacles. Here, the porosity was controlled by increasing the
radius of the obstacles. These effective diffusivity results were obtained by the standard approach of computing the slope of
the mean square displacement for a given porous medium. Each estimate was obtained by averaging over the trajectories
of 105 tracers moving in a random porous medium composed of unit cells containing Nobs randomly distributed circular

obstacles of radius R =


1−εf
Nobsπ

(see Eq. (1)). As expected, the effective diffusion is an increasing function of the system
porosity. Besides, slight decrease of the effective diffusivity with the number of obstacles can be observed. This effect can be
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Fig. 5. Estimated variations of the effective diffusivity as function of the porosity.

attributed to an increase of the porous medium tortuosity when the number of obstacles is increased for the same porosity
value. Eq. (6) can be re-written as follows:

∂cf
∂t

= v(x)
∂cf
∂x

+ Deff(εf (x))
∂2cf
∂x2

(9)

where

v(x) =


Deff(x) + εf (x)

dDeff(εf )

dεf

 
dεf (x)
dx


εf (x)

. (10)

Interestingly, Eq. (9) corresponds to an advection–dispersion model where the velocity is given by Eq. (10). One has that
dDeff(εf )

dεf
> 0. Following the procedure described in Section 2 for porosity estimation, Fig. 6 presents an estimate of the spa-

tial variations of the porosity at the interface vicinity for mean porosity at the porous medium bulk εf ≈ 0.8. The porosity
exhibits a sharp transition from εf = 1.0 in the homogeneous fluid to εf ≈ 0.8 in the porous medium bulk. For the config-
uration described in Fig. 1, one has that dεf (x)

dx ≤ 0. Given that εf (x) > 0 and Deff(εf ) > 0, one has that the velocity v(x) ≤ 0.
For the mean porosity in the porous medium bulk εf ≈ 0.8, Fig. 7 illustrates the velocity field induced by porosity and ef-
fective diffusion changes in the interface vicinity. The pointwise values Deff(x) and εf (x), and the corresponding derivatives
dDeff(εf )

dεf
and dεf

dx used in Eq. (10) were computed by using cubic spline interpolation of the effective diffusivity and porosity
points depicted in Figs. 6 and 7, respectively. In this way, particles migrating in the HFPM direction are subjected to a nega-
tive velocity field in the interface vicinity. In contrast, particles migrating in the HFPM direction perceive a positive velocity
field, adding impulse to move faster across the interface. In turn, this velocity field leads to an asymmetry in the transport
of particle across the interface.

The simple diffusion model given by Eq. (6) was numerically solved for comparing with the results obtained from
Brownian tracer simulations. To this end, a normalized domain (i.e., Lx = 1) was considered and a central finite-difference
schemewith 103 internal nodes was used for discretization of the spatial operator. The resulting differential equations were
integrated by means of a 4/5th-order Runge–Kutta method with time step of 10−4 time units. No-flux (i.e., ∂cf /∂x = 0)
condition was imposed at the entry boundary, and a central finite-difference was used for discretization with a ghost node.
The initial condition was set as zero for all nodes, except at the entry node where a non-zero initial condition was used. In
this way, similar to the Brownian dynamics simulation described in Section 2, tracers move far from the entry boundary to
be detected at the opposite exit boundary. Again, cubic spline interpolation was used for estimating the pointwise values
of effective diffusivity and porosity. For εf = 0.8, Fig. 8(a) presents the behavior of the breakthrough curves for the both
transport directions. The vertical dotted lines depict the time location of the maximum out-through concentration. Similar
to the Brownian simulation results in Fig. 2, a transport asymmetry is exhibited that reflects the faster transport in the
PMHF direction than in the opposite direction. The transport asymmetry was estimated by computing the mean crossing
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Fig. 6. Estimate of the spatial variations of the porosity at the interface vicinity, obtained by averaging over 103 porous configurations about εf ≈ 0.81
for the porous medium bulk.

Fig. 7. Velocity field induced by the porosity and effective diffusivity transitions at the system interface. The velocity profile corresponds to the porosity
variations shown in Fig. 6.

times from the breakthrough curves, and the results as function of the porosity are exhibited in Fig. 8(b). Interestingly, the
estimation from the macroscopic model Eq. (6) underestimates the transport asymmetry, with maximal errors of the order
of 10% for high porosity values. Overall, the previous results indicate that the transport asymmetry arises from a sort of
direction-dependent resistance at the interface. In turn, the underlying physical mechanism responsible for the asymmetry
of the diffusion seems very similar to the entropic bias of the fluctuations in a channel of changing section [22].

4. Conclusions

Numerical simulations of Brownian particles showed that asymmetrical transport can be induced by interfaces formed by
a porousmedium and a homogeneous fluid. In the vicinity of the interface, particlesmigrate faster in the porousmedium-to-
homogeneous fluid direction than in the opposite direction. Besides, the transport asymmetry is magnified as the porosity
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Fig. 8. (a) Breakthrough curves obtained from the numerical simulation of themacroscopicmodel given by Eq. (6). (b) Comparison between the predictions
from Eq. (6) and the Brownian tracer simulations.

is decreased. Using macroscopic modeling from volume average up-scaling, it was shown that the transport asymmetry is
induced by spatial changes in porosity, which is reflected as an advection term in the macroscopic transport equation.
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