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• Heterogeneous porous media with constant porosity are studied.
• Brownian dynamics simulations were used for studying the diffusion.
• Asymmetrical diffusion across the interface was detected.
• Asymmetries are explained by the advection-like effects at the interface.
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a b s t r a c t

Experimental results on tracer transport in a porous column consisting of two adjacent
segments of different (fine and coarse) glass bead packs having the same porosity value,
have shown that the breakthrough curve behavior depends on the transport direction
(Berkowitz et al. (2009)). It was found that tracers migrating in the fine-to-coarse (FC)
direction arrive significantly faster than in the coarse-to-fine (CF) direction. In this work,
we simulate Brownian tracers moving in a 2D random porous medium in a configuration
similar to that of the referred experimental set-up. By considering only diffusive effects,
the results confirmed the transport asymmetry across the heterogeneous interface. Argu-
ments based on effectivemedium equations for the porousmedium transport indicate that
the asymmetry can be explained by subtle differences of effective diffusivity between the
coarse and fine porous medium. In turn, such diffusivity differences are induced by differ-
ences in the tortuosity and porosity in the vicinity of the porous media boundary.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recently, Berkowitz et al. [1] considered the case of tracer dispersive transport in a porous column consisting of two
adjacent segments of different (fine and coarse) glass bead packs, but having the same porosity value. A schematized illus-
tration of the porous medium configuration is described in Fig. 1. For this system, experimental breakthrough curves were
measured for tracer pulses migrating in a steady-state flow field through the column in two directions, from the fine seg-
ment to the coarse segment (FC direction), or from the coarse segment to the fine segment (CF direction). From the mild
assumption of concentration and flux continuity across the interface, similar breakthrough curves in the FC and CF direc-
tions were intuitively expected because tracers experience equal lengths of subdomains in both directions. Interestingly,
experiments revealed different behaviors of the breakthrough curves, with tracers migrating in the FC direction arriving
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Fig. 1. Schematic description of the diffusion transport system. The coarse and the fine porous media have the same porosity.

significantly faster than in the CF direction. Besides, as the flow rate increased, the differences between the breakthrough
curves diminished. It was argued that this transport asymmetry was indicating the significant, time-dependent tracer accu-
mulation in the resident concentration profile across the heterogeneity profile. Berkowitz et al. [1] also showed that the use
of conventional advection–dispersion equations is inadequate for describing the asymmetric behavior of the experimen-
tally determined breakthrough curves. It was also argued that the resident concentration profile across the heterogeneity
interface displays significant accumulation of tracers. Subsequently, Appuhamillage et al. [2] developed a Fickian theory for
asymmetries (i.e., skewness) in breakthrough curves for transport across an interface. Cortis and Zoia [3] proposed a def-
inition for the solute flux across sharp interfaces and explored the underlying microscopic particle dynamics by applying
Monte Carlo simulation. Interestingly, the results were consistent with the findings reported by Berkowitz et al. [1] and
explained the observed transport asymmetry.

The differences in the breakthrough curves reported by Berkowitz et al. [1] are induced by subtle transport effects, in-
volving both advection and diffusionmechanisms. In particular, it is not clearwhether the transport asymmetries are caused
by local heterogeneities of the specific porous medium set-up. It is particularly important to remark that transport asym-
metries are reduced as the flow-rate is increased. This suggests that differences in breakthrough curves are caused mainly
by diffusion transport across the interface. Motivated by this, in the present work we study Berkowitz et al.’s set-up, by
considering both diffusion and advection of tracers across an interface between two homogeneous porous media of the
same porosity. Results derived from the simulation of Brownian tracers in random porous media show that, as observed
in Berkowitz et al.’s experiments, tracers migrating in the FC direction arrive significantly faster than in the CF direction. A
simple diffusion equation is used for explaining the transport asymmetries. In turn, it is shown that asymmetries are caused
by a convection-like effect induced by sharp variations of effective diffusivity across the interface.

2. System description

As illustrated in Fig. 1, the system under consideration consists of two different 2D saturated porous media having the
same porosity value εf (i.e., the area of the fluid contained in the porous medium relative to the total area as given by LxLy).
The porous media are composed of non-overlapping circular obstacles randomly distributed. It should be noted that Fig. 1 is
only a schematic diagram used for illustrative purpose. As will be specified in Section 3, the obstacle density used in experi-
ments in Ref. [1] and numerical simulations in this work are significantly higher than that illustrated in Fig. 1. The diffusion
transport is simulated by overdamped Brownian particles freely moving in the fluid and being reflected by the obstacles.
The overdamped dynamics of the particles is modeled by the Langevin equation

dr
dt

=


2D0ξ(t) (1)

where D0 is the bulk diffusivity, r = (x, y) and ξ(t) = (ξx(t), ξy(t)) are zero-mean white Gaussian noises with autocor-
relation functions


ξi(t), ξj(t ′)


= δijδ(t − t ′) with i, j = x, y. The well-known Milstein algorithm was used for numerical

integration of Eq. (1). The value D0 = 1 was used for all numerical simulations. The time step was set at 1t = 10−5, so that√
2D01t ≪ 1. That is, the mean path length is about 0.0044, which is sufficiently small for giving at least 225 steps before

the tracers escape from the porous medium domain.
The motivation behind our work was the result in Berkowitz et al.’s experiments showing transport asymmetries in

the axial direction. In fact, such experiments included both dispersion and convection mechanisms. The key observation in
Berkowitz et al.’s paper is that the transport asymmetrywas reduced as themean flowvelocitywas increased. This suggested
that diffusion might have an important role in the transport asymmetry. For exploring this idea, we designed the numerical
experiment, based on Brownian particle simulations, described in our manuscript. It should be emphasized that our main
intention was not to reproduce the specific physical conditions of Berkowitz et al.’s experiments, but rather to provide some
exploratory insights on the origin of the experimental transport asymmetry. To this end, we maintained the system set-up
as simple as possible for retaining themain characteristics necessary for exploring the effects of discontinuous porousmedia
interface in the directional transport of Brownian particles. Finally, given that our analysis is not intended for the specific
experimental conditions, the use of unit diffusion is a common practice in the numerical simulation of Brownian particles
via the Langevin equation (1).
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Fig. 2. Example of first passage time distributions for the FC and the CF transport directions. (a) εf = 0.76, (b) εf = 0.68. In both cases, NTr = 10,000,
NPM = 1000, RF = 0.02 and RC = 0.0035. For the sake of comparison, the continuous line is a Gaussian (normal) distribution.

For simulating tracer particles being transported along the composed porous medium, initial conditions are vertically
and uniformly distributed along the entry boundary, corresponding to x = −Lx (resp., x = +Lx) for diffusion transport in
the FC direction (resp., in the CF direction). The entry boundary is set as reflecting, while the exit boundary as absorbing.
The ratio between the crossing times between the two transport directions is considered as a diffusion asymmetry, which
is quantified as

α =
⟨TCF⟩
⟨TFC⟩

(2)

where ⟨TCF⟩ and ⟨TFC⟩ are the mean first passage time (MFPT) in the CF and FC directions, respectively. In this way, values
α ≠ 1 should indicate the presence of diffusion asymmetries in the transport of tracers across the interface. The MFPT was
computed as follows:

(a) For a given porosity value εf , construct a random distribution of circular obstacles of radius RF and RC , with RF < RC , for
the fine and coarse regions, respectively. Since the porosity is the same for the fine and coarse regions, one should have
that NFR2

F = NCR2
F , where NF and NC are the number of circular obstacles in the fine and coarse regions, respectively.

(b) For NTr tracers with initial conditions placed in the entry boundary, compute the first passage time as the time elapsed
for reaching the exit boundary.

(c) For avoiding bias induced by a particular obstacles distribution, the above two steps are repeated over NPM porous
medium configurations obtained by randomly redistributing the obstacles in each region.

(d) Compute the MFPT by averaging over the NTr tracers and the NPM porous medium configurations.

Intuitively, tracers have similar residence times in the fine and coarse regions. An interesting question is whether the
interface has a direction-dependent effect in the transport of tracers across the system.

3. Results and discussion

The numerical computations were carried out for Ly = 2, NTr = 10,000 and NPM = 1000. For a given porosity, this cor-
responds to the simulation of 107 trajectories for each transport direction (i.e., FC and CF directions). For Lx = 1, RF = 0.02
and RC = 0.0035, Fig. 2 presents two typical directional distributions of first passage times normalized by the obstacle-free
first passage time T0 = L2x/2D0 = 0.5. The points in Fig. 2 represent the numerical results and the lines are used only for
guiding the eye. The results in Fig. 2(a) correspond to the porosity value εf = 0.76, while the results in Fig. 2(b) correspond

to εf = 0.68. Since 1 − εf =
πR2Nobs

LxLy
, where Nobs is the number of obstacles, the average density of obstacles Nobs

LxLy
was about

190–250 and 1000–3000 for RF = 0.02 and RC = 0.0035, respectively. Similar qualitative results were obtained for other
porosity values and other obstacle radius. As in the Berkowitz et al.’s experimental set-up, these parameters represent a
composed porous mediumwith homogeneous porosity, but different obstacle radius. The main feature is the asymmetry of
the first passage time distribution. In fact, one has that the transport asymmetry is α ≈ 1.043 and α ≈ 1.056, respectively.
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Fig. 3. Resident concentration profiles for εf = 0.68, RF = 0.02 and RC = 0.0035. The maximum at the interface location seems to indicate mass
accumulation in the interface vicinity.

Thismeans that, on the average, tracers took about 4%–6%more time for crossing in the CF direction than in the FC direction.
For other porosity and radius values, we have found asymmetries as high as about 10%. The numerical results provided in
Fig. 2 indicate that, despite the porosity equality between both porousmedia, diffusion transport asymmetries can arise as a
consequence of asymmetries in the porous medium configuration. Certainly, the results in Fig. 2 are in agreement with the
experimental results reported by Berkowitz et al. [1] for porousmedium systems including saturating fluid flow. In this way,
the results derived from Brownian tracer simulations indicate that diffusion effects can largely cause transport asymmetries
across the porous media boundaries.

Theprevious numerical results indicate that transport of particles across heterogeneous interfaces can lead to asymmetric
transport. This is reflected when tracers move faster in some directions where trajectories find reduced resistance. In fact, it
has been shown that heterogeneous interfaces can induce an apparent drift or advection-like effect, which can be exploited
for rectification of diffusive particles [4–6]. In fact, the asymmetry effect shares some similarities with biased Brownian
motion in corrugated channels [7].

3.1. Resident concentration

Hornung et al. [8] employed Brownian particle tracking simulations for evaluating the discontinuity effects arising in
terms of diffusive-only systems. The numerical results showed that mass can accumulate at the interface. Mass accumula-
tion in the vicinity of the interface was evaluated by estimating the resident concentration. To this end, the average con-
centration of tracers along the horizontal coordinate was computed by dividing the system length 2Lx into Ns vertical strips
of width 1x and counting the number of times the trajectories remain within a given vertical strip. Subsequently, the re-
sulting profile was normalized with respect to the maximum value, which is located at the entry boundary. The porous
medium length Lx = 1 was used for magnifying the effects at the interface. The results for RF = 0.02, RC = 0.0035 and
εf = 0.68, are shown in Fig. 3, where the resident concentration profile was computed for 1x = 0.01 and averaged over
NTr = 10,000 tracer trajectories and NPM = 1000 random porous medium configurations. For both transport directions, the
resident concentration profile exhibits a fast decrement at the entry boundary, which can be caused by local porousmedium
fluctuations. The most interesting feature is the presence of a concentration maximum in the interface vicinity, suggesting
mass accumulation when Brownian tracers transit between the porous medium regions.

The resident concentration computed above corresponds to a concentration averaged over the control volume V = Ly1x.
That is, if c is the pointwise concentration of tracers moving in the saturating fluid and ⟨c⟩ is the resident concentration
averaged over the volume V , then

⟨c⟩ =
1
V


Vf

cdV (3)

where Vf = εf Ly1x is the volume of the saturating fluid in the control volume V = Ly1x. However, the averaged
concentration ⟨c⟩ is computed relative to the whole volume V , including both saturating fluid and impermeable obstacles.
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Fig. 4. Average spatial variations of porosity for the nominal porosity εf = 0.68, and obstacle radius RF = 0.02 and RC = 0.0035. The maximum at the
interface is caused by the fine-to-coarse porous medium transition.

A more suitable form of averaged concentration should be computed in terms of the saturating fluid only; namely,

⟨c⟩f =
1
Vf


Vf

cf dV . (4)

This concentration is commonly referred to as the intrinsic average concentration [9]. It is noted that the relation between
these two concentrations is given by

⟨c⟩ = εf ⟨c⟩f . (5)

To discard the effects of local spatial variations of porosity in the resident concentration fluctuations, the intrinsic average
concentration ⟨c⟩f should be computed. According to the expression given by Eq. (5), the spatial variations of porosity should
be available. In this way, the variations of the porosity εf (x) with respect to the horizontal coordinates were computed as
follows. Similar to the procedure for resident computation estimation, the horizontal domain is divided intoNs vertical strips
of width 1x. For each strip, the porosity is computed and averaged over NPM porous media configurations. The porosity was
evaluated by the hits of uniformly distributed randomnumbers over the vertical strips, and the corresponding porosity value
was estimated as the fraction of hits over the saturating fluid for 106 trials. The procedure was checked against simple con-
figurations with only one regular (e.g., square, circle, etc.) obstacle. Fig. 4 presents the average spatial variations of porosity,
obtained from averaging over 10,000 configurations of the porousmedium, for the nominal porosity εf = 0.68, and obstacle
radius RF = 0.02 and RC = 0.0035. These parameters correspond to the resident concentration profile depicted in Fig. 3. In
the porous medium bulk, the porosity exhibits small statistical fluctuations over the nominal value of εf = 0.68. However,
boundary effects introduced positive departures from the porosity values near the boundaries −Lx and +Lx. Interestingly,
the interface where the two porous media configurations are coupled the porosity presents a nearly symmetric variation
with the maximum at the interface location. One can use the estimated porosity profile for computing the intrinsic resi-
dent concentration as ⟨c⟩f = ⟨c⟩ /εf . Fig. 5 presents the profiles of the intrinsic resident concentration for both transport
directions. After correcting by spatial porosity variations, the intrinsic concentration presents amonotonous behavior, with-
out maximum values at the heterogeneous interface. That is, when expressed only with respect to the saturating fluid, the
resident concentration does not reflect mass accumulation in a vicinity of the interface.

3.2. Effect of the channel length

Apparently, discontinuous effects at the porous media interface cause transport asymmetry. Here, particles undergo a
change in the mean trajectory step as consequence of different mean distance between obstacles. In this way, it should be
expected that the channel length has an important effect in the transport asymmetry as the relative effect of the interface
is reduced as the channel length is increased. For obstacle radius RF = 0.02 and RC = 0.0035, Fig. 6 presents the effect of
the channel length in the transport asymmetry for two different porosity values. The transport asymmetry ratio shows a
gradual decrease as the channel length increases, indicating that the asymmetry is merely an effect of the porous medium
interface. For large channel lengths, transport along the porous medium bulk dominates over the transient effect induced
by discontinuity in the porous medium configuration.

3.3. Simple macroscopic modeling

It has been argued that the apparentmass accumulation at the heterogeneous interface (see Fig. 3) indicates that classical
Fick’s law cannot be applied for describing the diffusion transport in heterogeneous porous media. In fact, the presence of
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Fig. 5. Profiles of the intrinsic resident concentration ⟨c⟩f = ⟨c⟩ /εf . For both transport directions. After correcting by porosity variations, the resident
concentration exhibits a monotonous behavior.

Fig. 6. Effect of the channel length in the transport asymmetry for two different porosity values.

a maximum of concentration at the interface would imply that mass could be transferred against concentration gradients.
However, the results in Fig. 5 suggest that Fick’s law can be used, but onlywhen the physical modeling is based on the intrin-
sic resident concentration, ⟨c⟩f . An interesting question is whether an effective mediummodeling approach can account for
the transport asymmetry across the interface. The diffusion equation with diffusivity depending on the horizontal position
can be written as

∂ ⟨c⟩f
∂t

=
∂

∂x


Deff(x)

∂ ⟨c⟩f
∂x


. (6)

If one assumes that Deff(x) is a differentiable function, one has that Eq. (6) can be written as a diffusion–convection
equation as follows:

∂ ⟨c⟩f
∂t

= −v(x)
∂ ⟨c⟩f
∂x

+ Deff(x)
∂2 ⟨c⟩f
∂x2

(7)

where v(x) = −dDeff/dx. Interestingly, spatial variations of effective diffusivity can induce a convection-like effect. A
positive (resp., negative) diffusivity gradient induces a negative (resp., positive) velocity. In this way, tracers moving against
diffusivity gradients perceive a positive driving force, while tracers moving along diffusivity gradients are subjected to a
negative driving force. This suggests that transport asymmetry across a heterogeneous interface can be caused by spatial
variations of effective diffusivity. For evaluating this potential effect, Eq. (6)was numerically solved for a two-domain system
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Fig. 7. (a) Breakthrough curves obtained for model simulation with DC/DF = 1.05. (b) Diffusion asymmetry as function of the diffusivity ratio DC/DF . The
points represent results from numerical simulation of Brownian tracers.

similar to that in Fig. 1. Here, the fine and coarse sub-regions are considered as homogeneous domains with diffusivity
DF and DC , respectively. For avoiding numerical instabilities induced by discontinuous parameter at the interface, the
diffusivity change from fine to coarse regions was smoothed by adjusting to the Boltzmann (sigmoid) function. Central
finite-differences were used for discretization of the diffusion operator in the right-hand side of Eq. (6). For simulating the
breakthrough curve obtained by Brownian particle simulation, an initial amount of tracers was placed at the entry boundary
(either x = −Lx and x = +Lx), while the full domain was emptied. Reflecting condition (i.e., d ⟨c⟩f /dx = 0) was imposed at
the entry boundary. For Lx = 1.0, DF = 1.0 and DC = 1.05, Fig. 7(a) presents the breakthrough for the FC and CF directions.
Similar to the results in Fig. 2, the behavior of the breakthrough curve depends on the transport direction, with tracers
moving faster in the FC direction than in the CF direction. Vertical dotted lines highlight the position of the maximum. The
asymmetry, quantified by Eq. (2) is about 1.05. Fig. 7(b) shows that the diffusion asymmetry is an increasing function of the
diffusivity ratio DC/DF . That is, the higher the diffusivity changes at the interface, the higher the diffusion asymmetry.

3.4. Effective diffusivity

The previous results indicate that diffusivity change at the heterogeneous interface can induce diffusion asymmetry, with
preferred transport in the direction where diffusivity changes from lower to higher values. Effective diffusivity differences
in the heterogeneousmedium schematized in Fig. 1 are not caused by porosity differences since both fine and coarse regions
have the same value. Recall that the effective diffusivity of porous media can be expressed as

Deff =
εfD0

τ
(8)

where τ is the tortuosity. It should bementioned that the concept of porosity is dependent on the application [10,11]. In the
classical definition of effective diffusivity given by Eq. (8), tortuosity is referred to as diffusion tortuosity but other definitions
can arise depending on the transport situation. In thisway, for a given porosity εf , the effective diffusivity decreaseswhen the
tortuosity increases. Regarding the heterogeneous porousmediumconsidered in thiswork (Fig. 1), the fine region retains the
same porosity value than the coarse medium at the expense of a higher number of obstacles. Intuitively, a larger number of
obstacles within the same region should increase the tortuosity and, hence, reduce the effective diffusivity. Eq. (8) was used
for estimating the tortuosity differences between coarse and fine sections of the porous medium. To this end, the following
procedure was used: for a given porosity εf , tortuosity differences between fine and coarse regions were estimated by using
Eq. (8) written in the form τ =

εf D0
Deff

. For using this equation, one should dispose of the effective diffusivity for each porous
medium region. To this end, the effective diffusivity was estimated along the following steps: (a) Fix a porosity value, εf . (b)
Over a square domain of length LPM = 100, as done for the heterogeneous porous media, construct a homogeneous porous
medium with obstacles of radius R. For maintaining the average porosity fixed, the number of obstacles should meet the
constraint 1 − εf =

πR2Nobs
L2PM

. (c) Undergo Brownian trajectories over many trajectories (NTr = 10,000) and diverse porous
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Fig. 8. (a) Effective diffusivity as function of the obstacle radius for two different porosity values. The effective diffusivity decreases as the obstacle radius
is reduced. (b) Tortuosity is estimated from the effective diffusivity profile by using the classical expression Deff/D0 = εf /τ .

medium configurations (NPM = 1000) for computing themean square displacement (MSD)

x(t)2


. Since the porousmedium

is homogeneous, the coordinate x can be chosen as the horizontal direction. (d) The effective diffusivity Deff as

x(t)2


/t for

sufficiently large time t . That is, by plotting the MSD against time, the effective diffusivity is computed as the slope of the
curve for sufficiently large times [12]. (e) Estimate the porous medium tortuosity according to the equation τ =

εf D0
Deff

. For a
fixed porosity value, εf , the application of the above procedure leads to the estimated tortuosity as function of the porous
medium radius, R.

For two different porosity values, Fig. 8(a) presents the effective diffusivity as function of the obstacle radius, R, normal-
ized by the mean path length, λ, of the Brownian tracers. That is, λ = σ

√
2D01t , where 1t is the time step and σ is the

standard deviation of the Gaussian random number generator. In our case, 1t = 10−5, σ = 1.0 and D0 = 1.0, so that
λ = 4.47 × 10−2. Interestingly, the estimated effective diffusivity decreases for smaller obstacle radius. This indicates that
subtle differences of effective diffusivity between fine and coarse porous medium configurations are introduced by tortuos-
ity differences. Given the effective diffusivity in Fig. 8(a), (b) presents the tortuosity, computedwith the equation τ =

εf D0
Deff

, as
function of the obstacle radius for the same porosity values used in Fig. 8(a). It is noted that, as expected, tortuosity increases
for finer porous medium configurations. The results in Figs. 7 and 8 suggest that the differences of the breakthrough curves
for the diffusion transport system schematized in Fig. 1 can be largely explained by small diffusivity differences. In turn,
given that the porosity is constant; such diffusivity differences are introduced by configuration differences (i.e., tortuosity)
between fine and coarse porous media.

3.5. Extended Fick–Jacobs predictions

The results in Fig. 8 suggested that the transport asymmetry could be caused by subtle differences in the effective diffu-
sivity, which can be attributed to tortuosity differences between coarse and fine regions. However, Fig. 4 showed important
porosity variations in a vicinity of the porous medium interface. An analogy between the porous medium system in Fig. 1
and a channel with width variations can be made as follows. In the latter case, the 1D concentration can be described by the
extended Fick–Jacobs equations (eFJ), which is obtained from projecting the corresponding 2D transport equation along the
horizontal direction [13,14]. Specifically, the eFJ equation can be written as follows:

∂ ⟨c⟩f
∂t

=
∂

∂x


Deff(x)A(x)


∂

∂x
⟨c⟩f
A(x)


(9)

where A(x) is the channel width. The porous medium systems can be seen as a channel described by the eFJ equation if
the channel width A(x) is taken as the porosity εf (x). In such case, the estimated porosity profile, similar to the one shown
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Fig. 9. Comparison between Brownian tracers simulations and predictions obtained from the extended Fick–Jacobs equation.

in Fig. 4, can be used in Eq. (9). Regarding the effective diffusivity, some expression has been proposed in the literature. A
commonly used expression for Deff(x) is the Reguera and Rubi’s expression [15]:

Deff(x) =
D0

1 +
A′(x)2

4

1/3 . (10)

A numerical scheme similar to the one used for simulating Eq. (7), was used for solving numerically Eq. (9). The equiva-
lence A(x) = εf (x) was taken, and the effective diffusivity was estimated from Eq. (10). As made for the profile exhibited in
Fig. 4, the position-dependent porosity was obtained by averaging over 10,000 porous medium random configurations. Cu-
bic splines were used for interpolating the porosity profile. For RF = 0.02 and RC = 0.0035, Fig. 9 compares the predictions
obtained from the eFJ equation and the numerical simulations with Brownian tracers simulations. The transport asymme-
tries predicted by the eFJ equation are induced by porosity asymmetries in the interface vicinity (see Fig. 4). However, the
predictions made by the eFJ equation are smaller than those obtained with the simulations of Brownian tracers. Maybe, the
overall transport asymmetries observed in Brownian tracer simulations are caused by the combination of subtle porosity
and effective diffusivity (as caused by tortuosity differences) differences. The model given by Eq. (9) provides a good, al-
though lower prediction of the transport asymmetry. The discrepancies could be also attributed to the porosity fluctuations
that were not considered in the solution of Eq. (9).

3.6. Effect of a constant driving force

In the experiments of Berkowitz et al., it was observed that the transport asymmetry exhibited a decreasing trend as
the fluid velocity was increased. For exploring this effect from our numerical simulations framework, an external force
F = (Fx, 0) acting on the tracers was added to the Langevin equation (1). In this way, one has that the tracers dynamics are
governed by

dr
dt

= F +


2D0ξ(t). (11)

In terms of a macroscopic transport equation, the force F = (Fx, 0) has the effect of a constant velocity along the
x-direction [16]. For RF = 0.02 and RC = 0.0035, Fig. 10 exhibits the transport asymmetry as function of the force Fx,
for two different porosity values. It is noted that, as in experiments, the transport asymmetry is decreased as the force is
increased. This result supports our claim that the transport asymmetry reported in Ref. [1] has its origins in diffusion effects
about the transport medium interface.

4. Conclusions

Numerical simulations of Brownian tracers moving across a heterogeneous interface of porous media have shown that
the behavior of the breakthrough curves is direction-dependent. In fact, the results in this work provide important insights
for interpreting the findings of previously published experimental results showing that tracers move faster in the fine-to-
coarse direction than in the opposite. Numerical solution of the diffusion equation and the extended Fick–Jacobs equation
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Fig. 10. Transport asymmetry as function of an added force in the direction of the diffusion transport. Here, RF = 0.02 and RC = 0.0035.

suggested that changes of effective diffusivity and porosity at the interface could cause transport asymmetry of the type ob-
tained with experiments and simulation of Brownian tracers. Within this rationale, it was shown that, for a given porosity
value, the tortuosity of the porous medium has a negative effect in the effective diffusivity.
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