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HIGHLIGHTS

e Brownian transport in corrugated channels is studied.
e Curved midline has the effect of entropic barrier.
e Axial asymmetry induces asymmetric directional transport.
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non-zero midline) can induce asymmetric particle transport in the sense that the particle
current is dependent on the transport direction (either left-to-right or right-to-left).

gei'%'fz/:igj: Geometrically, this is caused by a combination of transient transport mechanism and non-
Sinusoidal channel uniform variation of the channel width, which produces the effect of a conical, diverging
Curved midline or converging, tube. Numerical results and theoretical predictions show that sinusoidal
Asymmetric transport channels with curved midline and varying width can exhibit important levels of current

asymmetry. In this way, this class of channels can be used as mass transport rectifiers where
Brownian particles move preferentially in one direction than in the opposite direction. It
is also shown that the transport asymmetry vanishes as the particle trajectories approach
equilibrium conditions for sufficiently large channels.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The problem of diffusion in geometrically confined system arises in different contexts. Examples include transport of
particles in biological cells and membranes [1,2] and in zeolites [3], catalytic reactions occurring on templates or in porous
media [4], separation techniques of size disperse particles on micro-scales and nano-scales [5], controlled particle release
[6,7] and many more. As pointed out by Burada et al. [8], the characterization of these transport phenomena involves
studying geometrically constrained Brownian dynamics [9-11]. A close understanding of the phenomena underlying
transport in confined geometries should allow accurate manipulation and design of structures oriented for controlling
diffusion in, e.g., drug release and migration of contaminants in porous media.

Narrow corrugated channels belong to a class of geometries for confined transport of small particles (e.g., biomolecules
and colloids) with application to both natural [1,3] and artificial devices [9]. These types of confinements are typically
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Fig. 1. Schematic diagram of shifted sinusoidal channels with vertical shift, Ay, and horizontal shift, Ay.

modeled as periodic channels with axial symmetry and unit cells delimited by bottlenecks [10]. It has been shown that,
under certain restrictive conditions, narrow corrugated channels with smooth delimiting walls can be reduced to quasi-one-
dimensional channels [11-14]. The main restriction for reducing the transport behavior into a one-dimensional channel is
that the width rate of change be sufficiently small. However, recent technological developments have allowed the fabrication
of channels with prescribed configurations. In many cases, the assumption of sufficiently small width rate of change is no
longer satisfied. Motivated by this, diverse theoretical and numerical results have reported the transport characteristics of a
large variety of narrow channel configurations. Rectification capabilities of corrugated channels have been also explored in
Ref. [15,16], showing that a mesoscopic description of the transport phenomena can require some generalizations of Fick’s
law for accounting for apparent drift in diffusion gradient.

Of particular interest in recent years are narrow channels with curved midline and varying width, which contain axial
asymmetries. Only a limited number of both theoretical and numerical results are available in the literature. Theoretical
estimations of the effective diffusivity were recently reported [ 17-19] and the range of applicability of such estimations was
numerically evaluated [20]. The effect of non-symmetric external forces in the particle current along the axial coordinate
was recently evaluated [21].

This work considers Brownian particle transport in two-dimensional periodic narrow channels with curved midline and
varying width. By using sinusoidal geometry for the limiting channel walls, numerical simulations of the Langevin equation
revealed an interesting feature of this type of channels formed by a finite number of unit cells; namely, the emergence of
asymmetric axial transport. That is, for certain channel configurations, Brownian particles are preferentially transported in
one axial direction (e.g., left-to-right) than in the opposite axial direction. Numerical results and theoretical predictions show
that the transport asymmetry can be explained from the combination of transient transport mechanisms and asymmetric
channel geometry.

2. Model and methods

2.1. The family of corrugated two-dimensional channels

We consider overdamped Brownian particles moving in a periodic 2D channel, of unitary period, with the curved midline
and narrow varying width, as shown in Fig. 1. Upper and lower walls are modeled by the sinusoidal functions f,,(x) and
fiow(x), where

1 2 (x— Ay
fup®) = " |:(Ly + 4y) — (L, — Ay) cos <7T(XL))] (1a)
1 2
fiow®) = 3 |:(Ly +4y) = (Iy — 4y) cos ( ZTX>} : (1b)

Here, A, and A, correspond to the horizontal shift between the periodic walls and to the minimum wall distance,
respectively. The channel width is given by w(x) = fu(x) — fiow (x), while the channel midline height is given by h(x) =
% [fup *) + fiow (x)]. It is noted that h(x) — 0as A, — 0, which corresponds to a vertically symmetrical channel. The
variation of the parameter A, in the range [0, 0.5] leads to a series of serpentine-like channels with curved midline and
varying width, as shown in Fig. 2. For A, in the range [0.5, 1.0], the resulting channels correspond to the mirror reflection
of that for the range [0, 0.5]. In this way, it suffices to consider the series of channels obtained within the horizontal shift
range [0, 0.5].
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(a) Ax/Lx =0. (b) AX/LX = 1/6- (c) AX/LX = 1/3-

(d) Ax/Ly = 1/2.
Fig. 2. Geometry of sinusoidal channels for different horizontal shifts, A, /L.
2.2. Numerical simulations

The overdamped dynamics of the particle is modeled by the 2D Langevin equation

/Do) 2)
a V7
where r = (x,y) is the coordinates vector. Here, £(t) = (&(t), ,(t)) are zero-mean white Gaussian noises with

autocorrelation functions <$,-(t), Ej(t’)> = §6(t — t') with i,j = x,y. Eq. (2) was numerically integrated by using a
Milstein algorithm [22]. Stochastic averages were obtained as ensemble averages over 10° trajectories. Transient effects
were estimated and subtracted.

For fixed parameters Ay, L, and Ly, one is interested in evaluating the effects of non-zero midline (i.e., A,) in the transport
of Brownian particles along the horizontal x-direction. Relative to the horizontal shift A,, the channel geometry is periodic
with unit period. Also, the channel geometry is anti-symmetric with respect to the center value A,/L, = 0.5. In this way,
it suffices to consider channels with horizontal shift within the range A,/L, = [0, 0.5]. To quantify the channel transport
properties, the time required for a particle for horizontally crossing the channel from a boundary to the other is considered.
The first passage time, denoted by Tgpr, is computed by placing the particle in either the left or right boundary and allowing
the particle to move for reaching the opposite boundary by first time. In this way, initial conditions are randomly distributed
in either the left (x = 0) or the right (x = L) boundary. Also, the initial position serves as the reflecting boundary. For each
particle, the time for numerical integration is finished when the particle crosses the exit boundary at x = L,. The first passage
time Tgpr is taken as the time for a particle to move from the entrance to the exit of the channel. As mentioned above, the
mean first passage time (MFPT), denoted by Ty = (Tppr), is computed over 10° trajectories. It is noted that the inverse of
the average first passage time, ] = ﬁ is an index of the particles current (i.e., flux) of particles along the channel.

2.3. Theoretical predictions

For an arbitrary channel, Kalinay [23] derived the following equation for predicting the MFPT along the axial direction:

Turer = /LXQ(X) dx 3)
M Jo w®)Deg (%)

where De (x) is the position-dependent effective diffusivity, w(x) is the channel width and 22 (x) = fo" w(x)dx'. Eq. (3) will
be used for obtaining theoretical predictions of the MFPT and making a comparison with the numerical results from the
simulations of the Langevin equation (2). To this end, a suitable expression for the effective diffusivity Dy (x) is required.
For channels with zero midline, one can use the following equation proposed by Reguera and Rubi [13]:

Dg

w23
(1+245)

Degr (%) = (4)
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Fig. 3. Comparison between the MFPT estimated by numerical simulations of the Langevin equation and the theoretical prediction given by Eq. (3).

where w’(x) is the derivative of the channel width. The curved midline has an important effect in the transport of Brownian
particles along the axial direction. It is noted that Eq. (4) does not take into account this effect. Recently, Dagdug and
Pineda [18] used projection methods for deriving the following effective diffusivity equation for channels with curved
midline and varying width:

arctan (y()(x) + w/z(")) arctan (yg(x) - w/z("))

Doy (x) = W' () - e Po ©)

where yg(x) is the derivative of the channel midline. In this way, Eq. (5) can be used in Eq. (3) for obtaining a theoretical
estimation of the MFPT. To this end, it should be recalled that w(x) = fup (X) — fiow (X) and yo(x) = (fup X) + fiow (x)) /2.The
integrals involved in Eq. (3) were numerically solved by means of Simpson’s Rule for numerical integration.

3. Results and discussion

In the sequel, without loss of generality, unitary length (i.e, Ly = L, = 1) will be used with an integration step of
10> time units. As a preliminary step for assessing the effects of axial asymmetry in diffusion transport, the stability of
the numerical scheme for the simulation of the Langevin equation (2) was evaluated against the theoretical predictions

given by Eq. (3) for channels with zero midline (i.e., Ay = 0). Here, w(x) = % [(Ly + Ay) — (Ly — Ay) cos (%")] and the

position-dependent effective diffusivity Deg (x) is given by Eq. (4). Fig. 3 presents the MFPT as a function of the normalized
vertical shift A, /Ly. Good agreement between the results obtained from Eq. (3) and the Brownian dynamics simulation can
be observed. As the channel width is increased, Brownian particles find fewer channel obstructions for moving freely before
hitting the exit boundary. In this way, as shown in Fig. 3, the MFPT decreases monotonously with the vertical shift. The
accuracy of the Brownian dynamics simulation can be also checked against the theoretical asymptotic value for a channel
without obstructions. In such case, the MFPT can be obtained from Eq. (3) with w(x) = constant and D(x) = Dy, giving

5

3y = 0.5. It is noted that both the Brownian dynamics simulation and the theoretical prediction converge asymptotically

to the expected value of 0.5.

3.1. Transport asymmetry in channels with curved midline and varying width

Fig.2(a)and (d)indicate that the channels with horizontal shifts A, /L, = 0.0and A, /L, = 0.5 are axially symmetric. That
is, the channel first-half is the mirror image of the channel second-half. As a consequence, the estimation of the average first
passage time Tyrpr is not dependent of the boundary at which particle trajectory is initiated. However, it is apparent that this
is not the case for the non-extreme shifts A,/L, € (0.0, 0.5). For vertical shift A, /L, = 0.05, Fig. 4(a) presents the variation
of the channel width w(x) for four different values of the horizontal shift A, /L,. As expected, w(x) is a symmetrical function
with respect to the channel midpoint x/L, = 0.5. However, the asymmetry is broken for the other cases. To quantify the
asymmetry, the average channel width for the first (0.0 < x/L, < 0.5) and second (0.5 < x/L;, < 1.0) horizontal channel
halves was computed. Also for A, /L, = 0.05, Fig. 4(b) exhibits the average widths as functions of the horizontal shift Ay/L,.
The difference between the first- and second-half average widths can be considered as an index of the channel asymmetry.
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Fig. 4. (a) Channel width as a function of the horizontal x-coordinate, for vertical shift A,/L, = 0.05. (b) First-half and second-half average widths as
functions of the horizontal shift A,/L,. Maximum difference is found for A,/L, = 0.25.

In this way, the channel asymmetry is zero for A,/Ly = 0.0 and A,/L, = 0.5, and increases as the horizontal shift departs
from these values. The maximum asymmetry is found for A, /L, &~ 0.25.

Fig. 4(b) shows that the first-half mean width is smaller than the corresponding second-half mean width. In this way, the
channel geometry resembles that of a conic channel with divergent width [24]. The conic channel is asymmetric in the x-
coordinate, and it was found that such axial asymmetry induces transport asymmetries in the particle diffusion properties in
the longitudinal direction. In fact, numerical results indicated that the effective diffusion along the width diverging direction
is smaller than in the width converging direction. The results in Fig. 4(b) suggest that asymmetric transport can be exhibited
by the sinusoidal channels. In this way, it is expected that particles are easier transported for the left-to-right (LR) than for
the right-to-left (RL) direction. For evaluating the transport asymmetry, the mean first passage time was estimated and, for
gaining physical insight, the results are presented in terms of the particle current] = % For three different values of the

vertical shift A, /Ly, Figs. 5 and 6 present the numerical results from simulations of Eq. (2) and the theoretical predictions
from Eq. (3). The theoretical MFPT in the RL direction was computed by the direct application of Egs. (3) and (5): for the
MFPT in the LR direction, Eq. (2.18) from Ref. [23] has to be solved with the exchanged left and right boundary conditions,
which is equivalent to using the horizontal coordinate change x + L, — x. The results obtained from numerical simulations
(symbols labeled as NS) and theoretical predictions (lines labeled as TP) are exhibited in Figs. 5 and 6. In this regard, the
following comments are in order:

(a) For three different values of the vertical shift A, /L, the particles currents in the LR and RL directions are exhibited in
Fig. 5 as functions of the horizontal shift A, /L,. It is noted that the directional currents are not monotonous functions, but
exhibit a minimum and a maximum for the LF and the RL directions, respectively. This means that the larger obstruction
(facilitation) for the Brownian transport is not found for the symmetric and the fully asymmetric cases. In fact, the
larger transport obstruction (facilitation) is found for a horizontal shift somewhere between the symmetric and the
fully asymmetric cases. As expected, higher particle currents are obtained for LR than for the RL direction, confirming
that the horizontally shifted channels induce asymmetric Brownian transport.

(b) It can be observed that the current is an increasing function of the vertical shift A, /L,. When A, /L, — 0and A, /L, — 0,

the channel becomes blocked and particles cannot pass from one boundary to another, so the particle current J is zero.

However, horizontal shifts remove the channel blocking, allowing the movement of particles along the channel cells.

On the other hand, when A, /L, — o0, the channel approaches a configuration with zero midline and the effect of

the corrugation disappears. In such case, the particle motion behaves as that of particles in unconstrained geometries.

Although the theoretical predictions, represented by the lines in Fig. 5, exhibit a shape similar to that obtained with

numerical simulations, important deviations can be observed. The differences between numerical simulations and

theoretical prediction can be due to the fact that the effective diffusivity equation (5) was derived by assuming
equilibrium conditions (i.e., for large times) [18], while the transport across the channels is achieved in finite times.

In this way, Eq. (5) provides poor estimates of the position-dependent diffusivity for large derivatives of the channel

midline.

Fig. 6(a) presents the net particles current in the channel, which is defined as J“% In contrast to the directional

currents, the net particles current exhibits a non-monotonous increasing behavior with respect to the horizontal shift

(c

~—
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Fig.5. Directional (either left-to-right or right-to-left) particle current, J, across a unit cell, as a function of the horizontal shift, A, /L. Important differences
in the directional transport are displayed. Numerical simulations (NS) are represented by symbols, while theoretical predictions (TP) by lines.
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Fig. 6. (a) Non-directional particle current across a unit cell, as a function of the horizontal shift A,/L,.(b) Net particle current quantified as the difference
in either directions. (c) Transport asymmetry quantified as the ratio of currents between left-to-right and right-to-left transport. Numerical simulations
(NS) are represented by symbols, while theoretical predictions (TP) by lines.

Ay/Ly. The lower and higher non-directional currents are found for A,/L, = 0.0 and A, /Ly & 0.3, respectively. In turn,
such a behavior indicates that the better conditions for Brownian particle transport are exhibited by serpentine-like
channels for which the width is nearly constant. In contrast, channels with A,/L, = 0.0 exhibit a compartment-like
geometry with bottleneck that limits the effective velocity at which particles are transported. Interestingly, theoretical
predictions show good agreement with numerical results only for relatively small values of the horizontal shift A,/L,,
corresponding to small deviations from a channel configuration with zero midline.

(d) The net particle current across the unit cell can be defined as |Jg; — Jir|, indicating the current difference across the
channel. The results are presented in Fig. 6(b), showing that the higher net current is achieved for horizontal shift
Ay/Ly ~ 0.25. That is, particles tend to move preferentially in one direction than in the other. In contrast to the
directional currents (Fig. 5) and the net current (Fig. 6(a)), the theoretical predictions are in good agreement with
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Fig. 7. Transport results for channels with vertical shift A,/Ly = 0.05 and three different numbers of unit cells (UC). Numerical simulations (NS) are
represented by symbols, while theoretical predictions (TP) by lines. (a) Non-directional particle current for one, two and three unit cells. (b) Net particle
current quantified as the difference in either directions. (c) Transport asymmetry quantified as the ratio of currents between left-to-right and right-to-left
transport.

numerical simulations. This improved agreement can be caused by a sort of compensation effect between the LR and
RL directional currents. It is apparent that the finite-time effects in either direction are partially compensated by the
finite-time effects in the opposite direction.

Fig. 4(b) showed that the higher width asymmetry is displayed for horizontal shift A,/L, &~ 0.25. This feature should
be reflected in the transport properties. The current ratio ;L—R can be used as an index for quantifying the transport

asymmetry, and the results are shown in Fig. 6(c). In line with the width asymmetry, the numerical results show that
the maximum transport asymmetry is found for A,/Ly =~ 0.25. In this way, the sinusoidal channel with horizontal
shift Ay/Ly ~ 0.25 can be used as a mass transport rectifier where Brownian particles move preferentially in the
direction of increasing width than in the direction of decreasing width. It is noted that Eqgs. (3) and (5) offer accurate
predictions of the transport asymmetry only for relatively small values of the horizontal shift A,/Ly, when channels
exhibit small deviations from the zero midline configuration. This suggests that Eq. (5) provides inaccurate effective
diffusivity predictions for channels with large midline derivative yj (x).

—
)
~—

3.2, Effect of the number of unit cells

It should be remarked that the results described in Fig. 6 were obtained for a unit cell of finite length where equilibrium
Brownian transport is hardly achieved. In this way, the transport asymmetry is induced by transient mechanisms in
combination with asymmetries of the channel geometry. For long random walk times, equilibrium is approached and
the transport asymmetries should be diminished. At equilibrium conditions, the directional transport difference must be
vanished. In geometric terms, random walk equilibrium conditions can be approached when the Brownian particles move
in an infinite series of unit cells. For A, /L, = 0.05, Fig. 7 presents the numerical simulation results for finite-length channels
with one, two and three unit cells. For a fair comparison between channels with different number of unit cells, the particle

current is normalized as | = Tgfm , where N is the number of unit cells. It is apparent that the current asymmetry decreases

monotonously with the number of unit cells in the transport channel. Dynamically, the reduction of the current asymmetry
is caused by a mixing phenomenon where particles can go back and forth between unit cells. In the limit of a large number
of unit cells, the particle trajectories are well mixed, leading to a vanishing of the transport asymmetry. The theoretical
predictions given by Eqgs. (3) and (5) were improved for increasing number of unit cells. This is not a surprising result at
all, since increasing the number of unit cells reduces the transient effects of the Brownian trajectories, improving in this
way the predictions of the effective diffusivity equation (5) [18]. In principle, for sufficiently large channels (i.e., for a very
large number of unit cells), the Brownian trajectories should attain equilibrium conditions and Eq. (5) should provide an
accurate prediction of the effective-diffusivity. However, as illustrated in Fig. 7(c), the transport asymmetry tends to zero
for sufficiently large channels, regardless of the curved midline.
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4. Concluding remarks

This work studied the transport of overdamped Brownian particles in two-dimensional corrugated channels with curved
midline and narrow varying width. By considering channels formed by unit cells, it was shown that the varying width can
introduce axial asymmetries, which in turn lead to asymmetric transport. The higher symmetric transport is found for
the midterm between a symmetrical channel configuration and a serpentine-like channel with constant width. Also, the
transport asymmetry is reduced with increasing number of unit cells since particle trajectories tend to achieve equilibrium
conditions. The results obtained in this work show that asymmetries can be advantageously considered for application
in many processes, such as transport in meso- and nano-structured membranes, controlled drug release and rectification
of particle transport in corrugated channels. In fact, recent advances in the development of meso- and nano-structured
materials allow the fabrication of channels with prescribed geometries, as those studied in this work.

Finally, the transport asymmetry reported in our work is similar in nature to that reported in Ref. [24]. Namely,
transport asymmetry, reflected as differences in the directional MFPT, can be explained from differences in the channel
width derivative in the LR and RL directions. The simplest case is the conic channel with constant midline explored in the
aforementioned paper. The channels described in Fig. 2 can be seen as topologically equivalent to piecewise compositions of
conic channels to yield non-centered midline. The main difference with the asymmetric transport results for conic channels
is that the curved midline and the varying width magnify the asymmetry of the MFPT.
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