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Abstract
Background The Eastern Tropical Pacific (ETP) harbors a great diversity of Porifera. In particular, the Aplysina genus has 
acquired biotechnological and pharmacological importance. Nevertheless, the ecological aspects of their species and popu-
lations have been poorly studied. Aplysina gerardogreeni is the most conspicuous verongid sponge from the ETP, where 
it is usually found on rocky-coralline ecosystems. We evaluated the polymorphism levels of 18 microsatellites obtained 
from next-generation sequencing technologies. Furthermore, we tested the null hypothesis of panmixia in A. gerardogreeni 
population from two Mexican-Pacific localities.
Methods and results A total of 6,128,000 paired reads were processed of which primer sets of 18 microsatellites were 
designed. The loci were tested in 64 specimens from Mazatlan, Sinaloa (N = 32) and Isabel Island, Nayarit (N = 32). The 
microsatellites developed were moderately polymorphic with a range of alleles between 2 and 11, and Ho between 0.069 
and 0.785. Fifteen loci displayed significant deviation from the Hardy–Weinberg equilibrium. No linkage disequilibrium 
was detected. A strong genetic structure was confirmed between localities using hierarchical Bayesian analyses, principal 
coordinates analyses, and fixation indices (FST = 0.108*). All the samples were assigned to their locality; however, there 
was a small sign of mixing between localities.
Conclusions Despite the moderate values of diversity in microsatellites, they showed a strong signal of genetic structure 
between populations. We suggest that these molecular markers can be a relevant tool to evaluate all populations across the 
ETP. In addition, 17 of these microsatellites were successfully amplified in the species A. fistularis and A. lacunosa, meaning 
they could also be applied in congeneric sponges from the Caribbean Sea. The use of these molecular markers in population 
genetic studies will allow assessment of the connectivity patterns in species of the Aplysina genus.
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 Introduction

Sponges (Phylum Porifera) have become an interesting 
model for studying ecological and evolutionary processes 
in marine environments; they are mainly characterized by 
limited larval dispersal capacity, sexual and asexual repro-
duction, and a sessile lifestyle [1–5]. Due to their high abun-
dance and wide diversity, they have a pivotal ecological role 
in most aquatic ecosystems, filtering the water column and 
providing substrate and shelter for a wide variety of organ-
isms [3, 6, 7]. Despite its relevance, biological aspects such 
as reproduction and population genetics have generally been 
little studied e.g., [8–12].

Studies of the population genetics in sponge species 
have been conducted mainly on traditional nuclear and 
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mitochondrial genes (e.g.: ITS’s, 28 S, 18 S, COI, among 
others), which showed a low polymorphism level in most 
groups. Therefore, the approaches addressed with these 
markers have been mostly in taxonomy and systematics, 
limiting the knowledge of historical and contemporary 
demography, as well as the phylogeographic patterns in this 
group e.g., [13, 14]. Nevertheless, the use of Next Genera-
tion Sequencing (NGS) platforms in the development of 
hypervariable markers, such as microsatellites, has increased 
significantly in population genetic studies of Porifera e.g., 
[15, 16]. These markers have shown to be powerful tools 
for population studies providing valuable information about 
their population dynamics e.g., [9, 11, 12].

Genetic population studies on Porifera have evaluated the 
degree of structure and connectivity genetic among popula-
tions. These patterns have allowed to identification of marine 
areas that function as genetic reservoirs [10]. The identifica-
tion of these reservoirs provides fundamental information for 
designing management plans and protection of marine areas 
[10]. In addition, the patterns of structure and connectivity 
genetic have been used to estimate and evaluate the invasive 
potential of some sponge species [17], as well as the effects 
of mass mortality [9], the effects of hydrodynamics on the 
distribution of populations e.g., [18, 19], and the assessment 
of endangered species [20].

The genus Aplysina is the most conspicuous sponge group 
of the order Verongiida, with 47 valid species [21], many 
of which are widely recognized for their developed natural 
metabolites with cytotoxic and antimicrobial activity, and 
the use in bioengineering in regeneration tissue [22–26]. 
Despite its importance, some biological and ecological char-
acteristics of this group of species are poorly understood. 
Although evolutionary aspects have been studied through 
mitochondrial and nuclear markers, they have exhibited 
low levels of polymorphism, even at the mitogenome level, 
which has limited their use in intraspecific studies [13, 27]. 
Species of this genus are characterized by larvae disper-
sal. The type of larvae has been described as clavablastula 
ciliated and swimming, with a period of settlement in the 
substrate after seven days [28]. Furthermore, this group 
presents asexual reproduction, which is carried out through 
fragmentation; where a part of the body of the sponge is 
detached and transported away several meters from the origi-
nal parental site, where they settled and developed [29, 30]. 
These features allow hypothesized a low dispersal potential 
in Aplysina species.

The Eastern Tropical Pacific (ETP) is a region that 
extends from the Gulf of California to northern Peru, char-
acterized by marine currents that provide unique oceano-
graphic conditions promoting high levels of productivity and 
biodiversity [31, 32]. Aplysina gerardogreeni (Gómez and 
Bakus, 1992) is the most common verongid species from the 
ETP, usually found in rocky and coralline ecosystems [13, 

33, 34]. Due to its high prevalence, the present study aims 
to develop microsatellite-type molecular markers to evaluate 
the genetic pattern of A. gerardogreeni in the ETP.

Materials and methods

Next‑generation sequencing and microsatellite 
design

The procedure details for the NGS and specimen collections 
were previously described [27]. For microsatellite design, 
repetitive motifs of di-, tri-, and tetranucleotides were 
searched in the assembled contigs for a subsequent primer 
design using Msatcommander software [35]. All forward 
primers included the M13 primer sequence attached to their 
5’ end following a protocol of dye-labeled universal primer 
[36].

Sample collection and DNA extraction

Sixty-four specimens of A. gerardogreeni were collected 
by SCUBA diving, 32 from Mazatlán Bay (23°15′29″N, 
106°28′25″W) and 32 from Isabel Island (21°51′15″N, 
105°53′33″W) Mexico (Fig. 1); samples were collected in 
different years (from 2010 to 2021) (Table S1). Genomic 
DNA was obtained using Promega’s Wizard® SV Genomic 
DNA Purification System protocol following the manufac-
turer’s instructions.

 Amplification and genotyping of microsatellites

The PCR reaction mix contained 0.7 µl dNTPs (10mM) 
(Promega™), 2.0 µl 5x PCR Buffer (Promega™), 1.1 µl 
 MgCl2 (25 mM) (Promega™), 0.5 µl unlabeled M13-tailed 
F-primer (10 mM), 0.5 µl R-Primer (10 mM), and 1.0 µl 
of fluorochrome-labeled F-primer (10 mM) (FAM, VIC, 
PET or NED), 1.0 µl BSA (20ng/µl) (Bovine Serum Albu-
min; SIGMA™), 0.1 µl Taq DNA polymerase (5u/µl) (Pro-
mega™), 1.5 µl of DNA (50 ng/µl), and fill out with  H2O 
(styled Milli-Q Merck Millipore) to a final volume of 13 µl.

The thermocycling profile consisted of two stages: first 
94 °C/4 min, followed by 30 cycles of 94 °C/30 s; 59 °C/30 
s and 72 °C/60 s. Second, the fluorochrome-labeled forward 
primer was added to continue with 10 cycles of 94 °C/30 s; 
53 °C/30 s and 72 °C/60 s; and a final elongation of 72 °C/20 
min. Amplification products were visualized in 1.5% agarose 
gels stained with Gel Red™ Nucleic Acid Gel Stain (Bio-
tium). To test the success of amplifying microsatellite loci 
on congeneric species, we randomly selected 3 specimens 
from each of the representative species of A. lacunosa and 
A. fistularis from the Mexican Caribbean and the Gulf of 
Mexico, respectively.
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The final products were genotyped with an ABI3730 
DNA analyzer (Applied Biosystems™). The genotypes were 
scored with Genemarker v3.0.1 software with GeneScan™ 
500 LIZ (Soft Genetics, State College, PA, USA) and to 
convert and determine allelic size. The dataset to generate 
input-files was handled using a macro-Excel, Flexibin [37]. 
Finally, the presence of null alleles, large allele dropout and 
genotyping errors were assessed with Micro-Checker v.2.2.3 
[38]. In addition, following the same methodology, we tested 

the cross-amplification in specimens of congeneric species: 
A. fistularis and A. lacunosa.

Data analyses

Polymorphism levels were estimated by the observed (HO) 
and expected heterozygosity (HE) indices, the number of 
alleles per locus and the polymorphic content index (PIC) 
using a macro excel Mstools v 3 [39]. Further, we evaluated 

Fig. 1  Location of the sampling stations in the Mexican Pacific and 
specimens’ images of Aplysina gerardogreeni. A Geographic distance 
between Mazatlan and Isabel Island. B Mazatlan. C Isabel Island. 

D A. gerardogreeni from Mazatlán. E A. gerardogreeni from Isabel 
Island (the yellow arrows indicate specimen collection sites for both 
sites). (Color figure online)
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the linkage disequilibrium (LD) between pairs of loci using 
Mstools. Tests of Hardy–Weinberg Equilibrium (HWE) for 
each locus were assessed using a probability test with a level 
of significance determined by Markov chain parameters of 
1,000 dememorization steps, 100 batches and 1,000 itera-
tions per batch using GENEPOP Web v 4.2 [40], we used the 
Weir and Cockerham for F-statistics [41]. The p-values of 
multiple comparison analyses (HWE and LD) were adjusted 
using the classical one-stage method of the False Discovery 
Rate (FDR) procedure [42].

For the statistical analyses of genetic structure, we only 
used those microsatellite loci in HWE. First, we used Struc-
ture v 2.3.4 software [43] with parameters set to 10 iterations 
discarded as a burn-in, and 100,000 Markov Chains Monte 
Carlo (MCMC) were run with a burn-in of 10,000 iterations. 
Moreover, Structure was run using an admixture ancestral 
model with independence of allele frequencies, and prior 
information of sample location. Ten replicates were run for 
each K value (K = 1 to 2). The K number was estimated with 
Structure Harvester Web v 0.6.94 [44]. According to plots of 
log probability LnP(K) of the data (Supplementary Material 
Fig. S1), the ten replicates for the best K were merged in 
Clumpp [45] and visualized by Distruct [46]. Second, Prin-
cipal Coordinates Analysis (PCoA) was constructed using 
a pairwise codominant genotypic distance matrix using 
GenAlEx v 6.5 [47]. Third, population differentiation was 
assessed using pairwise FST in GenAlEx v 6.5 [47].

Results

Genetic diversity

Forty-one microsatellite loci were isolated, of which 18 pre-
sented at least two alleles per locus (Table 1). Genetic diver-
sity indices were performed within loci with at least three 
alleles in each location (Table 2). Large allele dropout and 
genotyping errors were not detected, but seven loci exhibited 
the presence of possible null alleles. Six loci were in HWE 
and neither locus showed linkage disequilibrium (Table 2).

Almost all loci presented low levels of genetic diversity. 
The highest and the lowest numbers of alleles per locus were 
detected in the AGMX-6292 (11 alleles) and AGMX-180680 
(2 alleles) loci. The PIC average in the data set was 0.587; 
the values for each locus were between low and moderate 
(0.255–0.765). The highest values of HO were detected in 
AGMX-37595 and AGMX-734 (0.614 and 0.817) loci. The 
FIS showed high values in loci AGMX-82588 (0.692) and 
AGMX-182674 (0.783), and AGMX-734 loci with exogamy 
(− 0.186; Table 2). Isabel Island presented higher values of 
genetic diversity than Mazatlan, except the FIS average was 
higher in Mazatlan.

Genetic differentiation

 The hierarchical Bayesian analysis revealed two genetic 
clusters among the organisms. The average LnP(K) value 
was maximal at 2, and the membership probabilities of the 
sample individuals reflected a clear geographical pattern 
of genetic differentiation (Fig. 2). In addition, the genetic 
distribution of the individuals was graphically represented 
under a vector plane in the PCoA, the results suggested one 
genetic group associated with each locality (Fig. 3). None-
theless, there is an overlap of some Mazatlan individuals 
with Isabel Island cluster (Fig. 3). The initial two principal 
components (PCs) explain 45.09% of the observed variation: 
PC 1 explained 30.28%, whereas PC 2 explained 14.81%. 
The AMOVA showed a moderate genetic structure between 
localities (FST = 0.108; P-value < 0.05).

Discussion

Genetic diversity

The high number of loci out of HWE could be indica-
tive of either technical issues, such as null alleles [48, 49] 
(Table S2), or biological features of this species, includ-
ing the potential of inbreeding [28]. Although there is little 
information about the reproductive biology of A. gerardo-
greeni, one record in Isabel Island showed that 5.2% and 
2.5% of samples developed oocytes and spermatic cysts, 
with a female-male sex proportion of 3:1 [50]. Those results 
indicate sexual reproduction in a small portion, leaving the 
possibility that most sponges of this species reproduce asex-
ually. This would be consistent with low levels of genetic 
diversity and high values of inbreeding in both locations 
(Table 2).

In general, sponge species tend to present low levels 
of genetic diversity, which could be associated with the 
asexual reproduction seen in many species e.g., [51–53]. 
This type of reproduction is associated to the response 
of massive population reductions by meteorological phe-
nomena such as storms and hurricanes, and hydrodynamic 
local events [8, 18, 19, 54]. Mazatlan and Isabel Island are 
localized in the mouth of Gulf of California, a region with 
high oceanographic dynamics, because converged oceanic 
currents such as the California Current near-surface and 
the Mexican Coastal Current at sub-surface [55]. In addi-
tion, this region is characterized by high activity of tropi-
cal cyclones and hurricanes [56]; therefore, it is probable 
that sponge species recover their populations after a dras-
tic decline through asexual reproduction. Nevertheless, 
we did not detect identical genotypes across both locali-
ties. This finding could be due to (1) the sampling method 
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possibly preventing collection of clones because there 
were from three to five meters of separation between sam-
ples, and (2) this species present both types of reproduc-
tion according to environmental conditions (stressful and 
non-stressful) [54]. To corroborate our findings, studies at 
smaller geographic scales must be conducted e.g., [12, 53].

Genetic differentiation

Sponges from Mazatlan and Isabel Island conform to two 
genetically isolated populations (FST = 0.108*; Figs. 2 and 
3). Although there is little evidence of sexual reproduc-
tion in A. gerardogreeni, it is possible exchange organisms 
between populations through larval dispersal by currents or 

Table 1  Summary statistics of microsatellite loci in Aplysina gerardogreeni from the Mexican Pacific

NA number of alleles (N = 64; 32 from Mazatlan Bay and 32 from Isabel Island, Mexico)

Locus
(GenBank accession number)

Motif Primer 
sequence 
(5′→3′)

Dye Allelic range (bp) NA

AGMX-194964 (OR553599) (ACAT)4 F: AGT ATT GTT GTC CTT GGC CG PET 122–170 9
R: TCT GTC AGA ACA CGT GCA C

AGMX-191152 (OR553600) (ACAT)4 F: AAG AAA CAC ACC TGC CCT AC NED 102–170 10
R: TGG TGG TTG GTG TGG GAC 

AGMX-82588 (OR553601) (ACAT)5 F: ACA CGG CAT ACC TAC ATA CTC FAM 160–180 5
R: TAT CCG AAC ATG CTG ACC AG

AGMX-15843 (OR553602) (AC)11 F: TCT ACA TGC CAG ACT AAC AGC VIC 106–122 9
R: TGG TTA AGT GCA TGC ATT TGTG 

AGMX-44589 (OR553603) (ACGT)4 F: AGT GCT GAA CCT ACA TTT CTG NED 120–148 7
R: CTG AAG CTC TCC AGT ACC TG

AGMX-8089 (OR553612) (ACC)6 F: CAT AGA GGA GGG CTG TAC TG PET 114–132 5
R: AAG TGC ATG CTT CAC TGG AG

AGMX-57397 (OR553604) (TG)9 F: GTG CTG TTC TCC CAC TTG TG FAM 144–154 4
R: TGA GTT CAG CAT GAT TCA CTGC 

AGMX-37595 (OR553605) (AG)10 F: ACA GGC TAC TAT CAG TCC TCTC VIC 125–135 5
R: TTG ACA AAG CAG AGT TTC AGC 

AGMX-180680 (OR553613) (ACAT)4 F: AAC ATG TTT GCT TGC ATT GG PET 128–132 2
R: TCG TTC TAC TGT CAA CTC TAGC 

AGMX-31049 (OR553614) (ACAG)7 F: ACC ACA ACA GCC TGT ACA TG PET 170–182 4
R: GTC CCG CAT TGT ATT TCA CC

AGMX-57158 (OR553606) (ACGC)4 F: TTT CTG CAA AGC TGT GGT TG FAM 116–132 5
R: AGG AGC ACT GTA ATG ATG AC

AGMX-182674 (OR553607) (ACGT)5 F: AGA TGC TGC CTT GTA TTC AAC VIC 113–129 5
R: CAG TAG TTC AGG TGT GCA TG

AGMX-145552 (OR553615) (ACGC)4 F: ACT GCA CAC ACC ACT TCT AC VIC 127–167 5
R: ATG TGA TCT CTC CAT GTG TG

AGMX-6292 (OR553608) (AC)10 F: GGA GGG TAC AAC GAG AGG TC PET 106–136 11
R: GCG CAG TGG TCA CAT CTG 

AGMX-734 (OR553609) (TGTA)4 F: TGA CAC AAT CTA TCC TAT CTCC NED 120–140 5
R: AAC AGA GCA GTT CAG TGA GG

AGMX-24882 (OR553616) (ACAT)4 F: CGA CTT TCT TGC TAA GCT GTC FAM 156–176 3
R: GAA GTA CGT ACC TTG TGA GC

AGMX-123455 (OR553610) (TGTA)4 F: ATA TGG CAA TTG AGT GAC TTAC VIC 117–165 5
R: TCG TGC AAT GTC AGT TTC TG

AGMX-89450 (OR553611) (AG)8 F: CTT TCC AGT GTT CCG TGA GC PET 119–149 6
R: AGT AGG ATC CTC GTG AGT AGC 

Total or average 5.8
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by hitchhiking invasive and floating buds [8, 11, 12, 54]. 
Under the premise that A. gerardogreeni could develop a 
type of clavablastula larva like its congeneric (A. aerophoba) 
[28], it is possible there is limited dispersal. In addition, 
the environmental conditions between locations play a rel-
evant role in fixing different alleles [57, 58]. Both locali-
ties present contrasting environmental conditions. Mazatlan 
is a coastal region near many estuaries and river mouths 
where sediment entrainment is characteristic; sponge species 
are suspension feeders and changes in sediment levels can 
affect the abundance of populations [59]. In contrast, Isabel 
Island present low sediment deposition and is not affected by 
anthropogenic impacts, thus is considered a site with better 
environmental conditions for reef communities [60].

To conclude, we observed a high degree of genetic struc-
ture in A. gerardogreeni using only six microsatellite loci; 
we hope to increase the number of microsatellites by increas-
ing the study area at the Mexican Pacific (investigation in 
progress). In addition, these markers can be amplified in two 
congeneric species from the Caribbean Sea (A. fistularis and 
A. lacunosa), therefore, it offers the possibility of evaluating 
the patterns of genetic structure population in these species.
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