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A B S T R A C T   

In this work, the effects of different Oregano (Origanum vulgare) extract concentrations on the 
green synthesis of zinc oxide nanoparticles (ZnO NPs) were studied and their effects on the Band 
gap values and photocatalytic application in Rhodamine B (RhB) degradation. During the green 
synthesis of ZnO NPs, a zinc ion source is used as the metal precursor and another of natural 
extracts as stabilizing agents; with this regard, here in Origanum vulgare extracts were used at 
0.1%, 0.5% and 4% (% weight-volume). In order to define the ZnO NPs properties, they were 
characterized by FTIR, XRD, UV-Vis, HR-TEM, XPS and photoluminescence. In the FTIR analysis, 
the Zn-O bond can be seen at 384 cm− 1; by means of XRD, the hexagonal crystalline phase of ZnO 
is distinguished (Wurtzite). The extract concentration used influences the ZnO NPs crystallite size 
and Band gap values as well as the degradation percentage of RhB. The ZnO NPs hold irregular 
shapes, the majority of which are oval with certain spherical tendencies and they vary in size 
distribution, which ranges from 37 to 8 nm, the smallest sizes resulting from the highest extract 
concentrations. The Band gap values are 2.94, 2.77, and 2.29 eV for ZnO-OV-0.1%, ZnO-OV-0.5% 
and ZnO-OV-4%, respectively, rising as the extract concentrations increase. These materials 
present good photocatalytic activity, nonetheless, the ZnO NPs synthesized using 4% extract 
showed the best results, degrading 94.24% of RhB in 100 min in UV light and 93% in 180 min in 
solar light.   

1. Introduction 

As progress evolves along the years, the dyes used in various industries, such as textile and food, have become an important source 
of pollutants for the environment, mainly for water. Alongside, the scientific community has worked on improving and being selective 
with their water treatment methods pertaining to certain contaminants [1]. There exist several water treatment techniques for this 
type of contaminants; although, photocatalysis represents an advanced technology that eliminates dyes. This technique is considered 
feasible, fast and effective for organic pollutants, decreasing the generation of secondary contaminants [2]. Photocatalysis has dis
played promising results when using metal nanoparticles and metal oxides as photocatalysts, among which Ag [3], Au [4], SnO2 [5], 
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TiO2 [6] and ZnO [7] nanoparticles stand out in the degradation of anionic and cationic dyes, as is the case of Methyl Orange (MO), 
Erichrome Black T (EBT), Congo Red (CR), Methyl Red, Methylene Blue (MB), Rhodamine B (RhB), Malachite Green (MG) and others 
[8]. ZnO NPs are the most sought after for these applications due to their chemical stability, non-toxicity, thermal stability and 
considerable efficiency in the degradation of organic contaminants as opposed to other semiconductors [9,10]. For the synthesis of this 
material, the path of green synthesis has been explored with aqueous plant extracts being used as reducing and stabilizing agents for NP 
growth control; by using this type of techniques, the less environmentally friendly, costly, chemical and physical methods have been 
being replaced [11]. Green synthesis has been implemented previously for ZnO NPs synthesis, some of the extracts used have been: 
Ruellia tuberosa [12], Dysphania ambrosioides [13], Azadirachta indica, Cymbopogon citratus [14], Eriobutria japonica [15], Acacia 
concinna [16] and Swertia chirayita [17], to mention a few. Band gap size is one of the main characteristics of semiconductors, it is 
defined as the energy width between the valence band and the conduction band. For ZnO, this property has a value that borders on 
3.37 eV. Some authors that have used natural extracts synthesized ZnO NPs for dye degradation, have reported Band gap values 
between 3.02 and 3.63, as is shown in Table 1. 

The use of Origanum vulgare in green synthesis has already been explored for Au [28,29], Ag [30,31], Pd [32,33] and TiO2 [34,35] 
NPs with different applications as is depicted in Fig. 1. Origanum vulgare is considered a potential reducing and stabilizing agent within 
the synthesis of this type of materials due to its phytochemical content. To our knowledge, there is no record to date concerning the 
synthesis of ZnO NPs using different concentrations of Origanum vulgare extract and how these affect their properties, mainly with 
regards to the Band gap and photocatalytic activity in RhB degradation. Hence, this is the first research where the effect of different 
Origanum vulgare extract concentrations in the green synthesis of ZnO NPs is studied, their properties, and application in RhB 
degradation. 

2. Experimental 

2.1. Extract preparation 

The aim of this process is to obtain extracts with three different concentrations as clean as possible from Origanum vulgare solid 
residues. The concentrations of the Origanum vulgare extracts are 0.1%, 0.5% and 4% (% weight-volume) in aqueous medium. In this 
process for extracting the phytochemical agents, the different concentrations are prepared and shaken for two hours, next, they are 
placed in a water bath at 60 ◦C during an hour, and strained through a No. 4 Whatman filter. The obtained extracts are stored in 
refrigeration without light contact and used within a time frame no greater than 12 h for the ZnO NPs synthesis. 

2.2. ZnO NPs synthesis 

The final products of this procedure were the ZnO NPs samples that were labeled as follows: ZnO-OV-0.1%, ZnO-OV-0.5% and ZnO- 
OV-4%, which corresponded to the 0.1%, 0.5% and 4% extracts, respectively, used as stabilizing agents in the process. They were 
synthesized like so: firstly, 2 g of zinc nitrate (Zn(NO3)2 * 6 H2O), as the Zn source, were added onto 42 mL of the obtained Origanum 
vulgare extracts and shaken until the precursor was completely dissolved. Subsequently, the samples were placed in a water bath at 
60 ◦C until a paste-like consistency was visible and calcined at 400 ◦C for 60 min to obtain a dry, white powder, resulting these to be 
the ZnO NPs. 

2.3. Characterization 

Once the materials are obtained, it is important to know and determine their properties, therefore, the ZnO NPs were subjected to 
various techniques to elucidate some of them. To pinpoint the functional groups present in each of the samples, Fourier-Transform 
Infrared Spectroscopy (FTIR) was implemented; to examine the crystalline structure and phase of our materials, X-Ray Diffraction 
(XRD) was performed; likewise, X-Ray Photoelectron Spectrometry (XPS) was executed to confirm the chemical composition and to 

Table 1 
Band gap values of ZnO NPs synthesized using extracts.  

Extract Dye Radiation Band gap Ref. 

Moringa oleifera – – With flowers 3.12 [18] 
With seeds 3.18 
Leaves 3.25 

Opuntia humifusa – – 3.28 eV [19] 
Alchemilla vulgaris Rhodamine B Solar radiation 3.27 eV [20] 
Jujube fruit Methylene Blue (MB) and Eriochrome Black-T (EBT) Solar radiation 3.06 eV [21] 
Syzygium cumini Methylene Blue (MB) Solar radiation 3.32 eV [22] 
Pithecellobium dulce peel Methylene Blue (MB) Lamp (photoreactor) 3.14 eV [23] 
Aloe vera – – range of 3.02–3.09 eV [24] 
Vitis labruska Methylene Blue (MB) Lamp 3.26 eV [25] 
Artocarpus gomezianus Methylene Blue (MB) Sun light and UV light 3.3 eV [26] 
Euphorbia jatropa – – 3.63 [27]  
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establish if ZnO was truly being dealt with; High-Resolution Transmission Electron Microscopy (HR-TEM) allowed to probe and 
determine size, shape, and structure. The ZnO NPs were also characterized for photoluminescence. Furthermore, the Band gap was 
determined by ultraviolet-visible spectroscopy (UV-Vis) as well as the catalytic activity in RhB degradation. 

2.4. Photocatalytic activity 

To measure the photocatalytic activity, two tests were carried out: one in UV-light radiance and the other in solar light. For these 
analyses, 50 mg of ZnO NPs were added onto 50 mL of RhB, 15 ppm. This solution was shaken for 30 min without any light and 
subsequently irradiated with an ultraviolet light lamp at 10 W potency and a dose of 18 mJ/ cm2, or solar light, accordingly. To 
perform the assays and measurements of RhB concentration in a UV–vis spectrophotometer, 2 mL aliquots were taken every 30 min for 
180 min and analyzed at 664 nm maximum absorbance. 

The Eq. (1) that describes the percentage of RhB degradation (%D) is the following:  

%D= ((C0-Ct)/C0)*100                                                                                                                                                               (1) 

Where C0 is the initial concentration of RhB and Ct is the concentration of RhB at different time intervals. 

3. Results and discussion 

3.1. FTIR 

In Fig. 2, ZnO NPs can be observed as characterized by FTIR from 4500 a 300 cm− 1, where the 1399 cm− 1 (O-H) and 871 cm− 1 

(aromatic C-H) bands are apparent [36]. These signals are attributed to the functional groups existing in the organic components 
contained within the Origanum vulgare extracts, which increase in intensity as the extract concentration (weight-volume) is risen 

Fig. 1. Diagram of metal and metal oxide NPs synthesized using Origanum vulgare extracts and their applications.  

Fig. 2. FTIR spectra of the ZnO samples.  
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during ZnO NPs synthesis. The characteristic band of the Zn-O bond that allows us to confirm that our material is zinc oxide is found at 
384 cm− 1, corresponding to metal-oxide bonds [10]. 

3.2. XRD and structural study 

The X-ray diffraction patterns of the ZnO NPs samples from Fig. 3 allow us to estimate the crystallite size of the synthesized 
materials through the Scherrer formula, which is defined as:  

τ = Kλ / βcosθ                                                                                                                                                                          (2) 

where: τ, is the crystallite average size; K, a unitless value of 0.9; λ, the wavelength of the X-rays; β, the full width at half maximum 
intensity; and θ, is Bragg’s angle [37]. 

The crystallite sizes calculated from the XRD diffractograms were 37.3, 35.6 and 8.4 nm, for ZnO-OV-0.1%, ZnO-OV-0.5% and 
ZnO-OV-4%, respectively. In Fig. 3 various peaks that correspond to the hexagonal structure of the Wurtzite crystalline phase of ZnO 
NPs (JCPDS: 36–1451) can be seen. The signals are located at 31.79◦, 34.44◦, 36.27◦, 47.55◦, 56.61◦, 62.85◦ and 67.91◦ and indexed to 
the crystal planes (100), (002), (101), (102), (110), (103) and (112) [38]. In order to make the most out of the results obtained by XRD, 
these were subjected to a Rietveld refinement methodology by the High Score Plus software. Rietveld refinement is used to find refined 
structural parameters such as cell volume, lattice, density, etc. and microstructural parameters like microdeformation [39]. Table 2 
shows the parameters refined parameters. The results reveal that the samples have a hexagonal structure that belongs to the P63mc 
spatial group and the values of the lattice parameters match with those reported in literature (Crystallographic card JCPDS 36–1451). 
The quality of the adjustment is derived from some reliability indexes such as Rwp, Rexp , Rp, and GoF. GoF is calculated by Eq. (3).  

GoF=Rwp/ Rexp                                                                                                                                                                         (3) 

where Rwp, and Rexp are the weighted profile reliability parameter and expected R factor, respectively. Conversely, Rp is related to the 
crystalline structure [40]. 

The GoF values found for the three samples fall within the range of values reported in literature, which confirms that the refinement 
parameters are determined with greater precision [41–43]. 

3.3. Morphology study 

In Fig. 4, the TEM, HR-TEM and EDX analysis can be seen for ZnO-OV-0.1%, ZnO-OV-0.5% and ZnO-OV-4%. All of the samples hold 
irregular shapes, the majority of which are oval with certain spherical tendencies. As we increase the extract synthesis concentration, a 
smaller nanoparticle size can be appreciated, that is, the amount of extract has a direct influence on morphology, especially over the 
shape of the ZnO nanostructures as is observed in TEM Fig. 4 (A, D and G) and in the HR-TEM micrographs that are provided in Fig. 4 
(B, E and H). The ZnO-OV-4% sample has a tendency to form NPs that are more homogeneous in shape and size, it is as well the one that 
presented smaller sizes mainly owing to the quantity of bioactive compounds present in the extract which function as stabilizing 

Fig. 3. XRD patterns of the ZnO NPs.  
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agents, preventing the further growth of nanoparticles [44], which indicates that they provide greater stability during the synthesis 
process. The size distribution can be analyzed in insets Fig. 4 (A, D and G). The sizes that were found correlate to those calculated by the 
Scherrer equation in the XRD assay. The more homogeneous nanoparticles size distribution is considered to be that of the ZnO-OV-4% 
sample whose sizes fall mainly between 8 and 10 nm. For ZnO-OV-0.1% and ZnO-OV-0.5%, there is greater variation in the sizes, but it 
can as well be appreciated that the smaller the amount of extract used, the greater the particle sizes obtained are. Based on the HR-TEM 
analysis, Fig. 4 (B, E and H), of the three samples, the lattice fringe distance was found to be 0.28 nm, which belongs to the (100) plane. 
This plane is characteristic of the Wurtzite phase of ZnO as reported in several publications [45,46], which proves the obtaining of this 
phase and is in accord with the planes acquired through XRD for the three quantities of extract used. For a better assessment of the 
samples, EDX analyses were performed to determine the elemental composition of the synthesized nanoparticles as shown in Fig. 4 (C, 
F, and I) for ZnO-OV-0.1%, ZnO-OV-0.5%, and ZnO-OV-4%, respectively. All of the nanoparticles exhibited the presence of Zn, O, and 
the elements that compose the grid used as support during the analysis, which demonstrates and confirms the synthesis of ZnO 
nanoparticles [47]. 

3.4. X-ray photoelectron spectrometry (XPS) 

In Fig. 5, the survey scans are observed of the ZnO NPs synthesized using Origanum vulgare extracts (ZnO-OV-0.1%, ZnO-OV-0.5% 
and ZnO-OV-4%). The analyses were calibrated considering as reference the main peak of C1s (284.5 eV) [48]. In these survey scans, 
only the main peaks belonging to the elements O (O1s) and Zn (Zn2p1/2 y Zn2p3/2) were found, which are unique to ZnO NPs [49], 
indicating that the material was obtained satisfactorily whilst changing the extract concentrations. Similarly, for the three cases, the 
main peak of C (C1s) was found, this signal corresponds to carbon from the organic matter present in the molecules of the Origanum 
vulgare extracts used in the green synthesis of the ZnO NPs, in accordance with the results obtained by FTIR analyses, where the 
presence of C was identified in different functional groups, aside from the ZnO NPs (Fig. 2). 

In the high resolution XPS analysis, the main peaks of O1s and Zn2p were assayed, which are portrayed in Fig. 6. For the case of O1s 
(Fig. 6A), the peak was found in its characteristic position at 531 eV [50] without there being any variation for ZnO-OV-0.1%, 
ZnO-OV-0.5%, or ZnO-OV-4%. This was proven by the analysis of the Zn2p peak (Fig. 6B), where the characteristic doublet was found, 
that is the Zn2p1/2 and Zn2p3/2 peak located at 1044.5 and 1022.5 eV, respectively, as has been reported in other investigations [51], 
furthermore, it can be seen that there exists a difference in energy of 23 eV between Zn2p1/2 and Zn2p3/2, which is proper of Zn2+

species that belong to ZnO NPs [52], ratifying the formation of the Zn-O bond. 

3.5. Band gap 

The samples were analyzed by UV–vis spectroscopy, where absorbance signals were observed between 350 and 400 nm, these 
varied according to the amount of extract involved in the synthesis of the ZnO NPs; they were also used for determining the Band gap 
following the Tauc model [53]. The acquired Band gap values were 2.29, 2.77 and 2.94 eV for ZnO-OV-0.1%, ZnO-OV-0.5% and 
ZnO-OV-4%, respectively, as can be seen in Fig. 7. These values are similar to those previously published for ZnO nanoparticles [54]. 

Table 2 
Results obtained by Rietveld refinement.  

Material Crystalstructure Spacegroup Latticeparameter ε (%) Density (g/cm3) Cellvolume (Å3) R factors (%) 

0.1% Hexagonal P 63 m c a = 3.2554 Å  0.232  5.6450  47.87008 Rexp= 7.36890 
Rp = 21.78363 
Rwp = 28.04980 
GoF = 3.80651 b = 3.2554 Å 

c = 5.2157 Å 
α = 90◦

β = 90◦

γ = 120◦

0.5% Hexagonal P 63 m c a = 3.2544 Å  0.230  5.6512  47.81812 Rexp= 8.06965 
Rp = 26.51287 
Rwp = 33.53693 
GoF = 4.15593 b = 3.2544 Å 

c = 5.2135 Å 
α = 90◦

β = 90◦

γ = 120◦

4% Hexagonal P 63 m c a = 3.257 Å  0.877  5.6360  47.94669 Rexp= 8.09120 
Rp = 17.39183 
Rwp = 22.43976 

b = 3.257 Å GoF = 2.77335 
c = 5.219 Å 
α = 90◦

β = 90◦

γ = 120◦
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3.6. Photoluminescence 

Fig. 8 depicts the emission spectra of the ZnO NPs (ZnO-OV-0.1%, ZnO-OV-0.5% and ZnO-OV-4%) excited at 320 nm. The PL 
spectrum shows a weak UV emission band and a broad visible emission band that covers almost all the visible region, confirming that 
they indeed are ZnO NPs of spherical shape and nanometric scale. In the emission spectra (Fig. 8), there is a sharp peak centered 
between 400 and 420 nm (visible region) in all samples. The main emission peaks in the visible region are centered between 480 and 
500 nm (blue region); also, weak signals and a slope starting at 495 nm can be appreciated, which correspond to the green region. 
Additionally, the PL graphic study shows that as the concentration of Origanum vulgare increases, the emission peak at 590 nm (orange- 
yellow region) becomes more prominent and the signal approaches 700 nm that corresponds to the red region [55]. 

3.7. Catalytic activity 

The synthesized ZnO NPs were used for the photocatalytic degradation of RhB in UV radiation and solar radiation. During the 

Fig. 4. Morphology of ZnO NPs through HR-TEM A and B) ZnO-OV-0.1%, D and E) ZnO-OV-0.5% and G and H) ZnO-OV-4%, where inset show the 
size distribution and EDX analysis of C) ZnO-OV-0.1%, F) ZnO-OV-0.5% and I) ZnO-OV-4%. 
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preliminary experiments, the samples were shaken in darkness for 30 min to discard RhB adsorption effects; whereas in the assays in 
UV radiation, the ZnO-OV-0.1%, ZnO-OV-0.5% and ZnO-OV-4% samples adsorbed only 1% (Fig. 9a), owing to the low affinity between 
RhB and the ZnO NPs [56]. In the solar light experiment, no adsorption effect was found (Fig. 9c), proving the nonexistent affinity of 
the nanoparticles for the dye. Once equilibrium was reached, the UV lamp was switched on, for the case of UV radiation, and the 
samples were placed in the sun, for the case of solar radiation; the results can be observed in Fig. 9. 

In the UV-light set up, good yields were obtained for all three samples; it can be seen that over the course of time, Rhodamine B 
concentration decreased until degradation was accomplished [57]. The best sample was ZnO-OV-4%, which achieved 93% degra
dation at the 180 min mark, showing photocatalytic efficiency improvement in comparison to other investigations reported previously 
[58]. For the test in solar light, a behavior similar to that in UV radiation was seen, where ZnO-OV-0.1%, ZnO-OV-0.5% and 
ZnO-OV-4% conveyed very good yields considering that ZnO commercial nanoparticles show very low efficiency in solar light due to 
the fact that this type of radiation does not possess enough energy to excite them [59]. Our results revealed that the best degradation 
outcomes where depicted by the ZnO-OV-0.5% and ZnO-OV-4% samples, achieving 88% degradation within 80 min and 94.24% in 
100 min, this is attributed to the organic molecules from the oregano extract that remain on the nanoparticles after the biosynthesis 
process (see FTIR and XPS). These molecules act as photosensitizers that induce the nanoparticles to be excited with less energy (see 
Band gap section) [60], say visible light. Through the performed experiments, it was proven that the biosynthesized nanoparticles 
exhibit good efficiency in photocatalytic degradation of Rhodamine B dye. Furthermore, these results helped to successfully obtain the 
values of the degradation rate constants (k), which relate to the photocatalytic speed in the experiments. For the assays in UV radiation 
(Fig. 9b), a k growth tendency is made evident as the amount of extract used increases, where the best result was exhibited by 
ZnO-OV-2% (3.77×10− 2), whereas in the solar light experiments (Fig. 9d), the greatest k value was exhibited by ZnO-OV-4% 
(1.38×10− 2). The k values depicted in this work are greater than those reported in literature [61]. The improvement in photocatalytic 

Fig. 5. XPS spectra of ZnO Nps.  

Fig. 6. High resolution analyses of the main peaks of (a) O1s and (b) Zn2p of ZnO NPs.  
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performance of the biosynthesized nanoparticles was confirmed by the Turn Over Number (TON) and Turn Over Frequency (TOF) 
values, which define the sum of catalytic cycles that are carried out on each active site per time unit [62]. The calculated TON and TOF 
results are disclosed in Table 3; it is evident there is a tendency to render greater and better results as the amount of extract used during 
biosynthesis increases; the highest value was portrayed by ZnO-OV-4% in UV radiation (1.40×10− 3) as well as in solar radiation 
(1.32×10-3). 

3.7.1. Degradation mechanism 
The degradation mechanism for Rhodamine B is proposed as is disclosed in Fig. 10. The degradation process begins when photons 

from the radiation source are absorbed by the surface of ZnO nanoparticles causing excitation of valence band (VB) electrons, 
prompting their transportation to the conduction band (CB) [63], leaving a hole in the VB. This process results in the emergence of 
electron-hole pairs [64]. The excited CB electrons interact with molecular oxygen (O2) to generate superoxide radicals (O2

-); similarly, 

Fig. 7. Band gap of the ZnO NPs.  

Fig. 8. Photoluminescence (PL) spectrum of ZnO.  
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the VB holes generate hydroxyl radicals (OH-) owing to their contact with water molecules (H2O). The O2
- and OH- species have a high 

oxidative power and are responsible for leading the degradation of RhB. Proceeding down the mechanism, O2
- and OH- react with the 

RhB molecules accomplishing their degradation through three decomposition stages: (I) In the first stage of the process, the RhB 
molecule’s chromophores are broken off by effect of the oxidative species attack against the central carbon of the molecule, oxidating it 
and generating an intermediary species of lower molecular weight [65]. (II) In the second stage, the rings of the intermediary species 
are cleaved by attack of the oxidative species producing small, open-ring compounds [66]. (III) In the third and last stage, the 
compounds generated after the opening of the rings are degraded to final products such as mineralized compounds, H2O, and CO2 [67]. 

4. Conclusions 

In this work, it is important to highlight the direct effect the concentration of the aqueous extracts of Origanum vulgare has in the 
synthesis of ZnO NPs, resulting in the modification of the Band gap values in line with the amount of extract used. As a consequence, 

Fig. 9. Photocatalytic degradation of Rhodamine B in UV light (a) degradation rate constants in UV light, (b) photocatalytic degradation of 
Rhodamine B in solar light (c) and d) degradation rate constants in solar light. 

Table 3 
Turn over frequency results.   

Material TON TOF (min-1)  

Photolysis 6.04×10-3 3.36×10-5 

Solar Light ZnO-OV-0.1% 9.57×10-2 5.32×10-4 

ZnO-OV-0.5% 15.40×10-2 8.56×10-4  

ZnO-OV-4% 23.70×10-2 1.32×10-3  

Photolysis 19.83×10-2 1.10×10-3 

UV Light ZnO-OV-0.1% 24.31×10-2 1.35×10-3 

ZnO-OV-0.5% 25.43×10-2 1.41×10-3  

ZnO-OV-4% 25.28×10-2 1.40×10-3  
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the latter impacts the RhB degradation yield by virtue of the ZnO NPs photocatalyst used. The concentrations of Origanum vulgare 
extract used in the syntheses were 0.1%, 0.5% and 4% (% weight-volume). The Band gap values are 2.94, 2.77 and 2.29 eV for ZnO- 
OV-0.1%, ZnO-OV-0.5% and ZnO-OV-4%, respectively; these values increase proportionately to the rise in extract concentration. 
These materials exhibit good photocatalytic activity; although, the ZnO NPs sample that was synthesized using 4% extract depicted the 
best results, degrading 94.24% of RhB in 100 min in UV light and 93% within 180 min in solar light. As mentioned, the extract 
concentration used not only modifies the Band gap values of the ZnO NPs, but also varies their size and size distribution, ranging from 
37 to 8 nm, the smallest sizes resulting from highest concentration. Moreover, the ZnO NPs morphology holds semicircular shapes. 
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