
Citation: Ruíz-Ceniceros, J.A.;

Aguilar-Calderón, J.A.; Tripp-Barba,

C.; Zaldívar-Colado, A. Dynamic

Canonical Data Model: An

Architecture Proposal for the External

and Data Loose Coupling for the

Integration of Software Units. Appl.

Sci. 2023, 13, 11040. https://doi.org/

10.3390/app131911040

Academic Editor: Emanuel Guariglia

Received: 31 August 2023

Revised: 2 October 2023

Accepted: 6 October 2023

Published: 7 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Dynamic Canonical Data Model: An Architecture Proposal for
the External and Data Loose Coupling for the Integration of
Software Units
Juan Antonio Ruíz-Ceniceros 1, José Alfonso Aguilar-Calderón 2,* , Carolina Tripp-Barba 2

and Aníbal Zaldívar-Colado 2

1 Facultad de Informática Culiacán, Universidad Autónoma de Sinaloa, Culiacan 80013, Mexico;
ja.ruiz.ceniceros@ms.uas.edu.mx

2 Facultad de Informática Mazatlán, Universidad Autónoma de Sinaloa, Mazatlan 82017, Mexico;
ctripp@uas.edu.mx (C.T.-B.); azaldivar@uas.edu.mx (A.Z.-C.)

* Correspondence: ja.aguilar@uas.edu.mx; Tel.: +52-669-110-4470

Abstract: Integrating third-party and legacy systems has become a critical necessity for companies,
driven by the need to exchange information with various entities such as banks, suppliers, customers,
and partners. Ensuring data integrity, keeping integrations up-to-date, reducing transaction risks,
and preventing data loss are all vital aspects of this complex task. Achieving success in this endeavor,
which involves both technological and business challenges, necessitates the implementation of a
well-suited architecture. This article introduces an architecture known as the Dynamic Canonical
Data Model through Agnostic Messages. The proposal addresses the integration of loosely coupled
software units, mainly when dealing with internal and external data integration. To illustrate the
architecture’s components, a case study from the Mexican Logistics Company Paquetexpress is
presented. This organization manages integrations across several platforms, including SalesForce and
Oracle ERP, with clients like Amazon, Mercado Libre, Grainger, and Afull. Each of these incurs costs
ranging from USD 30,000 to USD 36,000, with consultants from firms such as Quanam, K&F, TSOL,
and TekSi playing a crucial role in their execution. This consumes much time, making maintenance
costs considerably high when clients request data transmission or type changes, particularly when
utilizing tools like Oracle Integration Cloud (OIC) or Oracle Service Bus (OSB). The article provides
insights into the architecture’s design and implementation in a real-world scenario within the delivery
company. The proposed architecture significantly reduces integration and maintenance times and
costs while maximizing scalability and encouraging the reuse of components. The source code for
this implementation has been registered in the National Registry of Copyrights in Mexico.

Keywords: enterprise application integration; EAI; loose coupling; external data coupling; software
architecture; system integration; legacy systems integration; software units

1. Introduction

At present, enterprises worldwide use for their internal process and operations soft-
ware applications purchased from third parties, legacy systems, in-house developed appli-
cations, or a combination. This software works in several layers on different environments
(i.e., operating systems, local networks, World Wide Web, cloud, etc.). Integrating systems
acquired from third parties and legacies has become a significant concern for companies.
Consequently, most of the software used are heterogeneous, autonomous, and operate in
a distributed environment. In this regard, diversity has been considered one of the most
relentless problems since it is inclined to cause interoperability complications. Specifically,
rise-up problems arise regarding semantic incompatible issues when software uses dis-
tinct meanings for the same data. The integration is not easy to perform; it requires the
expertise of the IT (Information Technology) department because challenges are made up

Appl. Sci. 2023, 13, 11040. https://doi.org/10.3390/app131911040 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131911040
https://doi.org/10.3390/app131911040
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2048-9600
https://orcid.org/0000-0002-4811-0247
https://orcid.org/0000-0002-6622-6630
https://doi.org/10.3390/app131911040
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131911040?type=check_update&version=2

Appl. Sci. 2023, 13, 11040 2 of 20

of several business and technical issues, especially concerning interoperability, scalability,
and maintenance [1].

Integrating systems acquired by third parties is a real problem, mainly due to the lack
of information exchange between entities such as banks, suppliers, and customers, among
others. Continual changes in the information systems environment have become the most
critical challenge in enterprises. The applications to be integrated are usually developed by
different teams that often do not focus on the integration as a relevant issue for them. This
is because, given the limited capacity of the resources for a large number of applications,
the deployment of the integration does not scale well and leads to operational complexity
and run-time overhead. Improving this is time-consuming, and there is no guarantee that
the created deployment for integrating software units will yield an efficient cost. There is
a Software Engineering (SE) area known as Enterprise Application Integration (EAI) [2]
dedicated to research in order to ameliorate this issue. The EAI goal is to integrate applica-
tion systems with different workflow functions and to build the data exchange mechanism
and application communication mechanism. Implementing EAI is a complex task involv-
ing technological and business challenges and requires appropriate EAI architecture. In
compliance with this, enterprise integration is implemented using different integration
tools, technologies, and methodologies. They all aim to ensure that data transformation,
translation, and communication are accomplished efficiently. Therefore, improvement in
integration technology, mainly concerning middle-ware, provides new forms to obtain agile
and responsive business architectures. Aiming at eliminating the integration challenges,
EAI is proposed as a solution. Nonetheless, assessing and introducing EAI is a complex
task that calls for a systematic and homogeneous architecture with suitable criteria. Faced
with this situation, the need arises for new EAI proposals to resolve the external and data
loose coupling for the integration at the software unit level.

Despite the required complexity in integrating software units in the real world, there
is no reference guide in the context of EAI to assist in implementing architectures for the
integration [1]. Consequently, it is essential to establish a baseline that can serve as a
starting point when developing integration work to develop reliable proposals that can
be applied to the real world. Furthermore, this will satisfy enterprise expectations since
software units and independent software system elements are highly interconnected and
represent a high information-sharing budget.

Significance of the Study

The advancement of technology has surpassed the proposals intended to address
the long-standing issues of EAI from its early years. Moreover, the landscape becomes
increasingly complex as emerging technologies drive the development of software systems,
giving rise to new integration requirements. This proposal is based on the two significant
challenges the EAI faces today: syntactic and semantic integration among enterprise appli-
cations at the level of software or data units. One reason is that each department/area built
its software systems, making interoperability difficult. It is essential to have a coherent
semantic integration approach due to analysis. For this, the architecture proposals currently
used continue to use a declarative definition for the data types and formats of the field
that will facilitate the exchange of information in the integration configuration. Some
challenges for the integration of systems acquired from third parties and legacy systems are
scenarios where the legacy system does not have an API (Application Programming Inter-
face) for integration or where, in some legacy systems, you may come across mechanisms
for communication via file exchange such as XML (eXtensible Markup Language), CSV
(Comma Separated Values) and XLS (Microsoft Excel Spreadsheet file), which are either
run manually or run automatically.

Research has predominantly concentrated on achieving seamless data exchange among
software components [1]. As a result, technological advancements have outpaced the
original proposals to address the long-standing issues within EAI since its inception.
Furthermore, the landscape is becoming increasingly intricate due to the emergence of

Appl. Sci. 2023, 13, 11040 3 of 20

new technologies driving the development of software systems. These systems are now
widespread across various sectors of society, encompassing a diverse range of business
processes, each reliant on distinct software solutions. These solutions are constructed on
varying platforms and use cutting-edge technologies, often incorporating multiple data
sources that lack inherent interoperability.

We illustrated a specific scenario in our prior research [1]. When a client requests a
change in the data being sent or the data type within its database schema during a web
service invocation, the consumer and the provider must reach a consensus on the message
formats. When independent development teams handle the design of these two integration
components, reaching an agreement on standard schemas can be challenging. Multiply
this challenge by the number of applications employing these services, each with its typical
service and software components, and you will understand how negotiating message
formats can evolve into a full-time task with significant maintenance costs. Typically,
creating these structures involves using XSD (XML Schema Definition) schemas, which
define how information travels and gets converted into an XML document during the
design phase. This approach establishes loose coupling at the external and data levels. This
condition also applies to data entities within databases, JSON (JavaScript Object Notation)
structures implemented by REST (Representational State Transfer) APIs, and messages
exchanged as in-memory components in scenarios like Queues, MQseries, Apache Camel,
and more. In each case, the information exchange is established during the design phase.
Consequently, the need for dynamic EAI solutions has become paramount. The proposal
presented in this article aims to address this challenge. It recognizes that dynamic EAI
solutions can be effectively achieved by utilizing technologies like SOA (Service-Oriented
Architecture) web services and contemporary approaches such as REST microservices. One
notable advantage of these emerging technologies is their capability to facilitate low-level
integration, thereby improving application data exchange. Consequently, this approach
fosters interoperability by enabling a controlled and efficient data flow.

Hence, this approach presents a scalable architecture that allows a better adaptation in
integrating software units (platforms, applications, and any software system that can be
integrated with another) with easy maintenance. The idea is to ameliorate the reduction
of cost and time in the integration through low coupling. To achieve this, a Canonical
Data Model (CDM) was defined, which, according to the International Business Machines
Corporation (IBM), is a well-defined model that structures the information in an organi-
zation; the objective is not only limited to modeling the data in a database but serves as a
reference for all the entities and their relationships through all the databases that exist in
the company and all the legacy applications that contribute to the initiative [3]. This model
was extended with Agnostic Messages (AM), which are digital structures representing an
unknown entity or process regardless of whether they are used at design or run-time [4].
These messages allow data to be modeled within a single database and serve as a reference
for all entities and their relationships, as well as represent standard information produced
and consumed by applications [3] in a simplified manner using structures Map collection
(key-value structures without duplicated keys).

The direct users of this architecture, named the Dynamic Canonical Data Model
(DCDM), are architects and software developers in charge of analyzing, proposing, and im-
plementing integration solutions. In this form, they will benefit by allowing an architecture
that provides them the much sought-after low coupling between technological architects
when proposing integration solutions. The proposed architecture can be applied to the
following:

• The integration from one to different software units, generating data integration
between different platforms and systems.

• The maintaining of master data integration. Master data is all the data critical to
running a business, describing people (customers, employees, and suppliers), places
(offices and locations), and things (products and assets) in different repositories. From
a single master data point, different platforms and systems are maintained.

Appl. Sci. 2023, 13, 11040 4 of 20

• Any integration running a Data Manipulation Language (DML) of a database with
its respective operations (insert, update, delete, and query). It can be used for data
maintenance on different platforms and protocols at runtime.

The Dynamic Canonical Data Model architecture presented in this article was devel-
oped to satisfy the integration needs of the Mexican Logistics Company Paquetexpress
(https://www.paquetexpress.com.mx, accessed on 20 May 2023), dedicated to national and
international parcel delivery in more than 240 countries around the world. The case was
developed in response to the need for the integration of software units, particularly in the
case of shipment validations with Amazon (https://amazon.com, accessed on 25 May 2023)
and Mercadolibre (https://mercadolibre.com, accessed on 26 May 2023). The DCDM archi-
tecture was designed according to the shortcomings detected in EAI in previous research
presented in reference [1]. This was because the integration costs per year represented
a high expense for the company. For this reason, a research project was developed in
the Information Technology (IT) department and the Postgraduate Program in Applied
Informatics at the Universidad Autónoma de Sinaloa (https://uas.edu.mx, accessed on 5 June
2023), where the DCDM architecture emerged. In Mexico, the authorship of the source
code was registered in the National Registry of Copyrights (Registro Nacional de Derechos de
Autor, abbreviated as INDAUTOR) (https://www.indautor.gob.mx/, accessed on 31 May
2023) since, in Mexico, the software as such is not subject to patent. The DCDM architecture
was registered as DCDM V.1.0 with the number: 03-2023-052910244600-01 in INDAUTOR.

This article is structured as follows. Section 2 details the related work about EAI.
Section 3 presents an architecture proposal for the external and data loose coupling for
integrating software units. Section 3.6 describes a case study. In Section 4, the conclusions
and some ideas for future research are presented.

2. Related Work

This section presents and analyzes the results obtained after conducting related work
research focused on architectures that improve loose coupling using EAI. The most used
for this purpose is SOA (Service Oriented Architecture) [5–17]. The integration corresponds
to an orchestration of technologies supported by existing communication protocols such as
SOAP (Simple Object Access Protocol) and HTTP (Hypertext Transfer Protocol), among
others.

A case study that explores the evolution of an established legacy system towards a
more maintainable Service-Oriented Architecture (SOA) is presented in reference [5]. The
suggested approach entails the restoration of the legacy system’s architecture as an initial
phase, enabling the formulation and implementation of a targeted evolution plan. The
case study focuses on a medical imaging system, demonstrating its transformation into a
service-based model.

In reference [6], the authors focus on developing an SOA-based model for Information
Technologies (IT) integration into Intelligent Transportation Systems (ITS). They applied
the proposed model involving some key elements (Roadside Unit (RSU) and navigation
systems) to generate value-added ITS. A case study has been designed and implemented
to illustrate the application of the model to an effective ITS service (parking management
system) that includes all the components of our model.

A service-oriented model for information integration is presented in reference [7]. The
model mainly focuses on giving a complete structure for information integration that is
adaptable to any environment. The information is converted into service, and then the
information services are integrated through service-oriented integration to provide the
information as a service.

The author in reference [8] proposes a new concept of SOA/ESB architecture for WSNs,
called “miniSOA/ESB”, to address the problem of the restricted computing power and
processing capacity of the sensors node due to the fact that it may not be possible for sensor
data to be encoded in an XML format within SOAP envelops or being transported using
internet protocol to applications.

https://www.paquetexpress.com.mx
https://amazon.com
https://mercadolibre.com
https://uas.edu.mx
https://www.indautor.gob.mx/

Appl. Sci. 2023, 13, 11040 5 of 20

Reference [9] combines the technology of web services and ServiceMix bus (a frame
of SOA-based loose-coupling system integration) to effectively resolve the existing sys-
tems’ problems, including information delay and the ineffective management of customer
expectations.

The research in reference [10] analyzes the characteristics of SOA. It determines that it
cannot meet some characteristics of mission-critical applications such as high availability,
continuous operation, high flexibility, high performance, etc. Also, the concept of ADS
and its architecture was explored, and it was found that such requirements are satisfied
by this system-designing paradigm. The authors present a novel SOA-ADS modeling ap-
proach called Autonomous Decentralized Service Oriented Architecture (ADSOA); the Low
Coupling Synchronization and Transactional Delivery Technology was proposed to ensure
data consistency and high application availability. A prototype tested the effectiveness and
feasibility of the ADSOA and the proposed technology.

A combination of SOA and Web service technology that simplifies the application inte-
gration into the development and use of services, solving the connectivity of the isomerous
platform, security, loose coupling between systems, and refactoring and optimizing the
processes is presented in reference [11]. The research integrates the isomerous enterprise
systems, applications, and business processes and composes the application environment
of the data sources as a whole system. In addition, the technique standards, such as SOAP,
WSDL, BPEL, and WDDI, are studied.

The authors in [12] propose a security architecture constructed as an adaptive way-
forward Internet-of-Things (IoT)-friendly security solution that is comprised of three cyclic
parts: learn, predict, and prevent. A novel security component named “intelligent security
engine” is introduced, which learns the possible occurrences of security threats on SOA
using artificial neural network learning algorithms. It predicts the potential attacks on SOA
based on the obtained results by the developed theoretical security model and the written
algorithms as part of the security solution to prevent SOA attacks.

Reference [13] presented an adaptation to the external context making use of an
Enterprise Service Bus (ESB) and Complex Event Processing (CEP). In this regard, the
proposed solution first leverages well-known ESB mediation patterns (e.g., transformation)
to adapt services to context transparently for the final user and the service developer.
Secondly, complex event processing has been used to analyze the events received from
external sources to detect relevant situations for the service context. Finally, a context
reasoner has been provided, which provides the transformations to be done depending on
the context events.

Two approaches to increase Web services and SOA adaptability were presented in
reference [14]. The first is based on a technical solution considering Aspect-Oriented
Programming (AOP) as a new design solution for Web services. The second combines
Model-Driven Development (MDD) and Context Awareness to promote the reusability and
adaptability of Web services behavior depending on the context.

A proposal to apply the SOA paradigm to existing Enterprise Resource Planner (ERP)
systems so that building, changing, and operating other information systems is faster,
easier, and cheaper is presented in reference [15]. In order to demonstrate this proposal, a
tool to integrate with SAP systems from OutSystems, an Agile development framework,
has been implemented, and this tool is a proof of concept. The authors present how this
integration was achieved quickly and effectively without SAP expertise.

Reference [16] presents a model of integration and management for mechanical func-
tional components that comprise the robotic control system. To that end, the authors use
the human neuroregulatory system as the basis for the decomposition of tasks and actions
behavior, based on the SOA paradigm for designing a distributed architecture that allows
the system’s viability. This proposal will ensure a total decoupling between modules by
promoting reusability and features like pattern-based design. At the same time, the system
is fully distributed, ensuring high flexibility, scalability, robustness, and fault tolerance.

Appl. Sci. 2023, 13, 11040 6 of 20

An integration framework based on semantic web services and SOA for supply chain
collaboration was presented in reference [17], and the process of semantic Web services
and automatic matching arithmetic for web services composition are discussed. An inte-
gration framework of the agile supply chain management system based on web services
shows that semantic Web services have the advantage of agile composing flows in supply
chain integration.

Also, the Microservices REST (REpresentational State Transfer) architecture applied in
the proposals in references [18–22] emerges as the second most used architecture for this
purpose. The authors of reference [18] present a real-world case study in order to demon-
strate how scalability is positively affected by re-implementing a monolithic architecture
(MA) into a microservices architecture (MSA) and also analyzed a case study based on
the FX Core system, a mission critical system of Danske Bank (Denmark). The technical
problem addressed and solved in this paper is identifying a repeatable migration process
that can be used to convert a real-world Monolithic architecture into a Microservices archi-
tecture in the specific setting of the financial domain. In reference [19], the authors review
the history of software architecture and the reasons that led to the diffusion of objects and
services first and microservices later. Finally, open problems and future challenges are in-
troduced. In addition, some practical issues were investigated and a few potential solutions
focusing on microservices were pointed out. The researchers in references [20–22] focus on
analyzing microservices’ core properties, highlighting their limitations and the challenges
concerning their components. The existing literature was analyzed and provided potential
directions and interesting points in this growing field of research, assisting application
designers in selecting the most appropriate approach.

In addition, it should be noted that other architectures have been implemented, such
as Publish/Subcribe found in references [23,24], Hub and Spoke presented in reference [25],
Camel Apache used in reference [26], Multi Tier Reference proposed in reference [27],
MOM, Message-Oriented Middleware described in reference [28], Federated Database [29],
BDI, Belief Desire Intention Software Model [30], Intermediate Layer [31], SCA, Service
Component Architecture [32], Grid Computing [33], and model-driven architecture devel-
oped to deploy microservices [34]; even if these are not very widely used, it is elementary
to mention them.

Most loose coupling software unit integration proposals are based in an environment
conformed by SOA, Web Services, and Microservices. In this environment, the network
nodes make their resources available to other participants in the network as independent
services to which they have access in a standardized way. Most definitions identify Web
Services using SOAP and WSDL in their implementation; however, it can be implemented
using any service-based technology.

3. Dynamic Canonical Data Model: An Architecture Proposal for the External and Data
Loose Coupling for the Integration of Software Units

This section introduces the architecture for integrating software units called the Dy-
namic Canonical Data Model (DCDM) by means of agnostic messages. The goal is to
improve the integration of loosely coupled software units. To do this, the focus is on
internal and external data integration, allowing the reduction of implementation costs and
maintenance costs in enterprise platform integration.

A detailed explanation is presented in the following subsections. The first Section 3.1
explains the DCDM architecture structure. Next, Section 3.2 describes the Agnostic Message
component that implements the structure of the message to the client, Section 3.3 details
the Envelope component as part of the Composite pattern, and Section 3.4 introduces the
StretegyCDDM interface that exposes the strategies to carry out the handling of the actions
in the integration. Section 3.5 shows the functionality of the DCDM architecture, and, finally,
in Section 3.6, a case study undertaken at the Mexican Logistics Company Paquetexpress
is presented.

Appl. Sci. 2023, 13, 11040 7 of 20

3.1. The DCDM Architecture Structure

The DCDM integration architecture is divided into three components: the first one is
the Message with the use of the MAP data structure, the second one is the Composite pattern
that is part of the message and allows for encapsulating the data in a universal composite,
that is, in a unique and standardized structure that does not change over time; on the other
hand the third component is the Strategy pattern with which the best strategy to take for
the integration is defined through the use of a Context as appropriate. The components
aim to improve the low coupling.

Figure 1 shows the components of the DCDM architecture. From left to right, the first
part indicates the Client, which can be any platform, software unit, system, etc., that uses
the architecture. The second component, called AgnosticMessage, represents the wrapper
or main message where the instructions are sent to the receiver so that it knows how the
message will be handled. The information represented as MAP and the Action Type action
to be executed in the Entity Name entities also travels there. The third component, Composite,
represents the structure where the payload called Payload is configured and stored to be
integrated. Finally, the Strategy component is where the strategies or algorithms are to be
implemented according to the message instructions live.

Figure 1. DCDM architecture structure.

3.2. The Agnostic Message Component

In integrating software units, the interaction between them is carried out through the
exchange of information. In this regard, the DCDM defines the Agnostic Message, which
represents the transactions and properties of an existing entity in a repository or database.
The particularity of this message lies in the contract or universal signature that is exposed to
the applications for sending standardized information within a dynamic structure that uses
the MAP component for this purpose. Agnostic messages are digital structures representing
an unknown entity or process regardless of whether they are used at design or run time.
The use of these messages allows modeling data within a single database and serving
as a reference for all entities and their relationships, as well as representing common
information produced and consumed by applications in a simplified way using collection
map type structures. The role they play in the proposed architecture is fundamental since
their structure is the basis for the type of message for data integration.

The graphical representation of the Agnostic Message structure is shown in Figure 2,
which exposes the components that conform to the message. Firstly, Envelope, which is the
object that stores the Payload sections, i.e., the payload, which, in turn, contains Properties
Entity or Entity Properties and the Transaction section which constitutes the information
represented as a MAP <key, value> which represents the information that will be used as
appropriate to the management algorithm.

The message is used universally; that is, it can be used for any purpose when adding,
modifying, or deleting information from any entity in any database. Moreover, it can be
drawn on executing any function or procedure found in the databases using the same
message or wrapper with the proposed definition. On the other hand, this design was
translated in its XSD (XML Schema Definition) schema structure form to represent the
contract to the client within the WSDL (Web Services Description Language). Figure 3
shows such a graphical representation in the service location section called targetNamespace

Appl. Sci. 2023, 13, 11040 8 of 20

that can be consumed from the web address http://message.cddm.mx/ (accessed on
10 June 2023) and this is where the namespace is located. The sendMessage section contains
all the objects that conform to the Agnostic Message. It uses the messageFacade to access the
schema of each component under transactionScheme. The Payload, conformed by actionType,
entityName, fields, key, and value, is stored here. The request represented by sendMessage
and the response by sendMessageResponse of the service are publicly exposed in order to be
used by the different software units, and the possible actions of actionType (SAVE, UPDATE,
DELETE, and PROCESS) are also defined.

Figure 2. The Agnostic Message component.

Figure 3. The Agnostic Message XSD structure.

The representation of the Agnostic Message in the service schema towards the client is a
WSDL contract exposed for consumption. The message is created in an XSD file containing
predefined tags for each document element. The WSDL is composed of the following tags:

• types. This shows the types of data to handle and helps shape the message.
• Message. These contain the request and response where the Agnostic Message travels.
• portType or interface tag indicates the document’s operations.

http: //message.cddm.mx/

Appl. Sci. 2023, 13, 11040 9 of 20

• sendMessage corresponds to the request in the petition.
• sendMessageResponse. The document’s response according to the petition made in

sendMessage.
• binding specifies the communication protocol used: SOAP (Simple Object Access Protocol).

An example of the Agnostic Message implementation is shown in the SoapUI tool
version 5.4.0 used as an aid for the execution of the tests, where the WSDL document
contract is consumed. Figure 4 shows a window of the SoapUI tool used to test the web
services. The structure of the message is interpreted by a human being, as it contains
captured information which is observed in the tags actionType, entityName, fields, key, and
value. In the execution section, at the top of the image is the URL (Uniform Resource
Location) or endpoint where the AgnosticMessageCDDMPort web service is hosted, and,
from there, the test is executed.

Figure 4. The WSDL Agnostic Message consumption example by the SoapUI tool showing the message
structure with data.

3.3. The Composite Envelope Component

Once the Agnostic Message was defined, the Payload (tree) compound was designed
and created from the Envelope component. This pattern allows for building complex objects
through basic array structures and recursion. The compound tree structures are created
from simpler components represented as leaves of a tree that inherit the functions and
properties of the first primary structure and are extended to all its nodes, which helps to
simplify the treatment of the objects created through a single standard interface. In this
form, all objects are managed similarly to support the message sent by the client. The
Envelope component is an abstract class that contains all the properties of the Entity, such
as the procedures and methods that were used by the Payload compound. In addition,
it contains the Message (leaf) compound, which is managed in the same manner by the
Strategy pattern.

Figure 5 shows the representation of the Composite pattern implemented in the Agnostic
Message. This pattern is conformed by the abstract class Envelope and has two properties.
The first one is the typeNode, which indicates whether it is a tree structure or a leaf of that

Appl. Sci. 2023, 13, 11040 10 of 20

structure. The second one is Transaction, which is constituted by actionTye that designates
the action or transaction that will be executed in the entity; in this case, it can be SAVE,
UPDATE, DELETE, and PROCESS. In this sense, if the value of actionType is SAVE, then a
new record will be added in the entity entityName. In this order of ideas, the entityName
property represents the name of the entity to be affected, and it also contains a set of
instances called Fields employing the MAP object that stores the field-value records, that
will be added, deleted, updated or consulted, of a given entity. This component has the
Payload class that represents the helpful content of the message. The function of this class is
to generate a structure of transactions that may affect one or several entities. In addition, it
contains six methods that can be used to manage the structure; one of them is addEnvelope.
As an input parameter, it receives an Envelope type object, which is used to add a node or leaf
to the tree with its properties. The removeEvelope method removes or deletes a leaf (node)
from the tree, and getEnvelope retrieves a leaf or set of leaves. Finally, the invokeStrategy
method is the most important because it helps to invoke the Strategy component utilizing
the Context that creates access to all the algorithms that will be used for the processing of
the messages sent by the clients.

Figure 5. The representation of the implementation of the Agnostic Message compound in a class diagram.

3.4. The StretegyCDDM Component

A fundamental component in the architecture proposed in this article is the Strategy
pattern (StrategyCDDM), which consists of an interface to the clients that use the algorithms
designed for the management of the Agnostic Message. This pattern is used through a context
represented by the Context element as an interface to the Composite Payload client.

The algorithms created for this solution StrategyDML and StrategyProcess represent an
example of the diversity of algorithms that can be defined and implemented as a strategy
in each integration. This will allow the architecture to make decisions according to the
incoming message.

Components were also created to access the database metadata as part of Strategy-
CDDM, to create the entities dynamically according to the incoming message and generate
the resource for its persistence. In this sense, another method was defined to implement
the persistence of the message according to the entity examined, represented, and persisted
in the data stores. This concludes in the implementation and management Agnostic Message
messages represented in the Composite pattern.

Figure 6 shows where the Strategy pattern is implemented in the architecture proposed
in this article. Moreover, it describes the classes that compose and implement the Strat-
egy pattern; one of them is the StrategyCDDM interface that declares the manageEnvelope

Appl. Sci. 2023, 13, 11040 11 of 20

method. The class is implemented in the different algorithms—in this case StragyDML and
StrategyProcess. In the case of the first one, it adds the methods generateEntity, executeProcess,
createQueryInsert, and formatField as private and auxiliary methods. Both are responsible
for creating and validating the DML (Data Manipulation Language) instruction, to be later
executed with the executeProcess method. On the other hand, the StragyProcess algorithm
does not have any strategy at this time, and it was created in order to later build the
execution of queries and execution of store procedures and/or pl-sql depending on the
database engine where it is implemented. The clients can access the algorithms using the
Context class, whose function is to generate access to the composite component about the
operation and management of the messages.

Figure 6. Representation of StrategyCDDM strategy implementation.

3.5. DCDM Architecture Functionality

To carry out the integration of software units employing Agnostic Message in order to
improve the low coupling, the functionality of the architecture presented in this article is
explained in this sub-section.

Figure 7 shows a sequence diagram where the three components that conform to the
DCDM architecture communicate. The Figure shows how a client initiates the integration
using the architecture proposed in this article. The process starts when the client sends a
message addressed to the Agnostic Message component, carried out through the sendMessage
operation. As an input parameter, a MessageFacade type object named Payload is sent, which
represents the Composite of the Envelope component where the message is hosted. The
Composite Payload message is divided into two essential parts; the first one is the Properties
Entity and Transaction Entity section, as shown in Figure 2. The first section of the message
contains the entity’s name to be searched in the metadata of the repository or database,
and this will be the starting point to create the instance or the DML (Data Manipulation
Language) sequence. This will allow executing the order according to the Action Type
property, which indicates the action to be performed in the database repository. In the
second part, the transactions are represented by a MAP data structure. These structures
allow for managing the fields and their respective values, which makes it possible to
store them in key/value pairs, where the key is the entity’s field and the value is the field’s
value. Once the client has sent the message, the Strategy pattern is accessed from the
Payload compound with the StrategyCDDM implementation where the algorithms that
will provide a solution to the message request are stored. This access is provided through
an interface called Context, the strategy to be taken according to the Action Type property,
where a new instance of the algorithm to be implemented is created. StrategyDML and
StrategyProcess will take care of the message and provide a solution to the integration with
the managementStrategy operation, which has as input parameter of the composite Message.
Once the entity is generated and the message persists, a response is given to the client,
indicating if the execution was correct or if there is a problem.

Appl. Sci. 2023, 13, 11040 12 of 20

3.6. Application Example

This section details an example of the application of the DCDM architecture in a real
environment, explains how the implementation was carried out, and validates the result.

The company selected for implementing and testing the DCDM architecture was
the Mexican Logistics Company Paquetexpress (https://www.paquetexpress.com.mx,
accessed on 13 June 2023). This was due to the facilities granted because of the existing
working relationship. Paquetexpress was founded in 1986 and has over 8000 employees in
20 departments. The main line of business is logistics, and the core of this is the collection,
documentation, shipping, and delivery of packages, mainly in Mexico and worldwide. The
central administration office is located in Los Mochis, in Ahome, Sinaloa, Mexico.

Figure 7. The DCDM architecture functionality in a sequence diagram.

In the commercial area, which is of great importance for the company, the follow-
ing problem is highlighted: how to control and record the agreements and arrangements
with customers (discounts, promotions, and rates) at the time they request the services
mentioned above, as well as customer follow-up, sales, and executive commissions. Like-
wise, there was an associated problem concerning how it affects the credit portfolio and
accounting of the income of each one of them. Faced with this situation, communication
was established with the board of directors in general management, commercial manage-
ment, administration management, operations, and IT management to propose a solution
through the DCDM architecture. The issue was also discussed with the technology ar-
chitects from the IT department to see the feasibility of implementing the integration
architecture presented in this article to alleviate the problems encountered. Thus, approval
was obtained.

As the first step, the work plan for the integration process was defined, establishing
Java as the programming language to implement the DCDM architecture. This is one of the
most widely used outside the academy in the business applications industry. Afterward,
the definition of the software systems to be integrated was established, among which is
CRM Salesforce Unlimited Cloud (https://www.salesforce.com/, accessed on 28 May
2023) and financial platforms such as Oracle Cloud ERP (https://www.oracle.com/erp/,
accessed on 28 May 2023), as well as all the POS (Point Of Sale) that includes the online
documentation and web services for the B2B (business to business) integration of customers.
The solution to the problem of the Mexican Logistics Company Paquetexpress using the

https://www.paquetexpress.com.mx
https://www.salesforce.com/
https://www.oracle.com/erp/

Appl. Sci. 2023, 13, 11040 13 of 20

DCDM architecture, according to the integration plan, is divided into five steps, each of
which is listed below:

1. Creation of the Envelope, Payload, and Messages components.
2. Generation of the Transaction (MAP) structure.
3. Generation of the Agnostic Message (MessageFacade).

Loading of the Payload component with Message sheets.
4. Generation of the Strategy component (StrategyCDDM) algorithms.

Generation of the StrategyDML algorithm.
Generation of the StrategyProcess algorithm.

5. Generation and publication of the Agnostic Message service through the AgnosticMes-
sageCDDM class.

The following subsection presents the description and code for each step in imple-
menting the DCDM architecture.

3.6.1. Creation of Envelope, Payload, and Message Components

As a starting point for implementing the DCDM architecture, it is necessary to imple-
ment the classes detailed in Figure 5. In this regard, an abstract class was used to create
the message envelope of the Envelope composite element. This represents the basis of the
properties and functions that were extended to the Payload and Message classes required to
generate the core of the message. This served as a container for the group of transactions to
be executed through the MAP structure (an abstract data structure that stores key-value
pairs) and the properties of the entities. The basis for implementing these classes is the
abstract class Envelope. Then, the Payload component implementation extending their prop-
erties and functions is created. Finally, the Message compound is also created, which is
extended from the same component (class Envelope) at the same level of the class Payload,
thus creating a tree with its leaves (nodes) ready to be loaded with the instructions to be
executed in the algorithms managed by the strategy pattern.

3.6.2. Generation of the Transaction Structure (MAP)

After building the components that store the properties and transactions to be executed,
the Transaction class was created as part of the message. The class contains the ActionType
and entityName properties as an essential part of the message. The fields parameter contains
the fields and values in a MAP structure that are used in the implementation of the Agnostic
Message. The fields were consumed by the clients that integrated information into the
several existing platforms.

3.6.3. Generation of the Agnostic Message (MessageFacade)

The generation of the Agnostic Message is realized, employing the MessageFacade
class plus the integration of each of its previously generated components (introduced in
Section 3.6.1), such as the Payload and Messages components. On the other hand, with the
assistance of the TransactionScheme class, a front structure towards the client that will give
input to the MAP data and the EntityName and ActionType property as part of the payload is
exposed. The structure of the MessageFacade class is confirmed by two methods used to set
and receive the messages. These use the List structure, an abstract data type representing
a finite number of ordered values. The class structure for the TransactionScheme class is
confirmed by methods to set and receive Action Types from the transaction, which can
be SAVE, UPDATE, DELETE, or PROCESS (see Figure 5). To do this, implement a MAP
structure to get the fields on which it operates through a set and receive method for the
entities’ names.

3.6.4. Generation of the Strategy Component (StrategyCDDM)

In order to continue with the integration, the next step performed was implement-
ing the pattern strategy and its algorithms. To do this, the StrategyCDDM interface was

Appl. Sci. 2023, 13, 11040 14 of 20

implemented. It contains the definition of the necessary operations to manage the Agnostic
Message according to the strategy adopted by Action Type.

To access the algorithms that manage the messages, the Context component is used to
create the context according to the strategy selected at run time through the managementStrat-
egy operation. The operation has as input parameter a Message object. The explanation
of these components can be found in Section 3.4. The algorithms that are accessed by
the Context component and are managing the incoming messages for this implementation
are StrategyDML and StrategyProcess; both are extended by the StrategyCDDM interface
through the implementation of its operations. The strategy implemented for the Agnostic
Message is confirmed using a method that helps to manage the message according to its
Action Type, calling the execution of the DML (Data Manipulation Language) string. In
summary, the strategy in this exemplification consisted of generating queries to the entities
and executing a DML data manipulation action.

3.6.5. Publication of the AgnosticMessageCDDM Service

The web service was built in SOAP format while implementing the DCDM architecture
in the Paquetexpress enterprise environment. Figure 8 shows a graphical representation of
the WSDL that describes the service interface. The Port Types section shows the sendMes-
sage and sendMessageResponse operations as part of the request and response of the service.
The Bindings section indicates the use of the SOAP protocol as a means of communica-
tion for AgnosticMessageCDDM, and finally, the Services section refers to the previous
sections where it shows the ports and addresses that locate the service. Finally, the imple-
mentation of the AgnosticMessageCDDM web service was implemented using the JAVA
programming language.

Figure 8. SOAP Web Service for the AgnosticMessageCDDM.

The final project structure for this application example is detailed in Figure 9. It shows
the Dynamic Canonical Data Model architecture project with the application sources among
the different packages implemented. These are: Composite Package, Database Package, Message
Package, and Strategy Package.

Figure 9. Final DCDM architecture Project Structure implemented for this application example.

Appl. Sci. 2023, 13, 11040 15 of 20

3.6.6. Application Example Validation Test Case

The application example validation was performed in the enterprise Paquetexpress to
mitigate previously introduced problems. Paquetexpress requires validating the decoupling
at the data and external level in the platform integration, using four clients connected to
the integration service; two of them will have to send two more data items added to the
Items entity of the PostgresSQL database. This implementation must not have to affect
the three connected clients. To do this, four clients were implemented under the graphical
tool SoapUI in its version 5.4.0; then, these were connected to the server that exposes the
DCDM architectural solution to proceed to integrate information to the same entity (Items)
of the PostgresSQL database. However, two of them will need to send one more data item
(new fields) to that entity due to the data structure that operates the software they use.

Paquetexpress implements Quality Assurance (QA) process practices. One of the best
practices establishes that, for each software implementation or code upgrade, it is necessary
to define and perform a test plan. In this regard, the test plan for validating the application
example is detailed next in Table 1, where the software and hardware resources required
are detailed.

Table 1. Test case description.

Item Description

Software Operating System: Windows 10.
Web Server: WebLogic 12c.
Data Base Management System: PostgresSQL 9.5.
WSDL Client: SoapUI 5.4.0.
Platform: Java 8.

Hardware HP EliteBook, RAM 8GB, Core i5 1.80 GHz.

Goal

Validate the decoupling at a data and external level in the platform integration,
using four clients connected to the integration service, two of them will have to
send two more data items that were added to the Items entity of the PostgresSQL
database.

Identifier TC_Desacople_Item.

Name Decoupling Entity Items.

Preconditions The four clients must be connected to the service using the proposed
architecture.

Phases 1. Connect each client to the service: create a connection to the service using the
WSDL contract from the proposed architecture.
2. Send each client integration data: validate the integration of the four clients to
the entity Items.
3. Add two more fields to entity Items: add two fields in the database, to the
entity Items: sku and kop.
4. Use one client (from the four clients) to send the new field key and value: add
in one client of the value: 100,234 to the field sku
5. In another client, send the second field added and its value: in the second
client send the value: 24 for the field kop.
6. Send the same data for the two fields (no changes): validate the integration of
the new data sku 100,234 to the entity Items.
7. Send data from the third client to the service: validate the integration of the
new data kop 24 to the entity Items.
8. Send data from the fourth client to the service: if the two previous customers
send back information that has always been sent, these customers will not have
to present any errors.

In order to start with the test case execution, the first step consisted of reviewing the
Items entity from the database (see Figure 10). Items has four columns: Id, description,
amount, and price. Thus, coulums sku and kop will be integrated with some data.

Appl. Sci. 2023, 13, 11040 16 of 20

Subsequently, the service named AgnosticMessageCDDM was deployed on the We-
bLogic Server 12c application server (see Figure 11).

In the next step, the four clients were connected to the WSDL contract deployed in the
WebLogic Server 12c version 12.2.1.3.0. Once the connection is established, the fields and
values that traveled within the universal agnostic message were captured and managed by
the web service called AgnosticMessageCDDMService that contains the implementation of
the architecture. Figure 12 shows the data for the columns (Id, description, amount and price)
of the entity Items sent through the message.

Then, the next step consisted of adding two more fields to entity Items from the
PostgreSQL database: sku and kop. To do this, one client (from the four clients) was used
to send the new field sku and its value: 100,234, and another client was sent the second
field kop added and its value: 24. To achieve this, we continued using the same WSDL
contract where the implementation of the DCDM architecture is located, which was not
changed, nor was a new deployment of the web service made. It is important to mention
that no maintenance was performed on any of the connected clients, according to the test
case 1 phases 6, 7, and 8. Figure 13 shows the final entity Items with the columns sku and
kop integrated with its data, respectively.

Figure 10. Entity Items structure in PostgreSQL.

Figure 11. AgnosticMessageCDDM deployment in WebLogic Server 12c.

Figure 12. Data from the clients integrated in the entity.

Appl. Sci. 2023, 13, 11040 17 of 20

The IT department at the Paquetexpress Delivery Company confirms the validity
of this statement. Adopting this architecture has effectively addressed the identified
issues, resulting in substantial cost savings for the company. Notably, it has reduced
integration time, maintenance costs, cost optimization, scalability improvements, and the
facilitation of reuse. This is sustained by the fact that this adoption’s real-world success was
demonstrated in the case of Paquetexpress. This organization manages integrations across
multiple platforms, including Oracle SalesForce, Oracle ERP, Oracle HCM, Oracle OTM, and
Data Warehouse. Additionally, they handle client integrations such as Amazon, Mercado
Libre (MeLI), Grainger, and Afull. Each of these integrations incurs an approximate
cost ranging from USD 30,000 to USD 36,000. These integration projects encompass all
phases of the certified process, including analysis, design, development, quality assurance
(QA), testing, and implementation. The process often involves consultants from firms like
Quanam, K&F, TSOL, and TekSi. Evaluating the impact on other applications consumes
a significant amount of time. Maintenance costs become prohibitively high when clients
request changes in data transmission or data types, especially when utilizing cutting-edge
tools like Oracle Integration Cloud (OIC), Microservices RESTful API, Service-Oriented
Architecture (SOA), Oracle Service Bus (OSB), JMS WebLogic Queue and Topic, and Web
Service SOAP. Each integration structure is closely tied to a canonical data model in these
cases, which introduces considerable time, cost, and risk with each change, mainly when
governed by a detailed governance system with service catalogs. The DCDM dynamic
architecture introduces run-time message handling, significantly streamlining the steps in
analyzing, designing, implementing, and deploying integration components. Significantly,
these optimizations do not disrupt other processes and applications, reducing the risk of
impacts on numerous connected clients and lowering maintenance costs when new data
transmission requirements arise.

Figure 13. Entity Items with the data integrated after the execution of the test case applying the
DCDM architecture including sku and kop fields.

The results regarding the low coupling at the external and data level are satisfactory.
Among the results obtained, it stands out that the contract exposed for customer consump-
tion did not suffer changes; likewise, the customers connected to the web service did not
need to receive maintenance, thus saving time and effort. In addition, it was demonstrated
that the proposal is scalable and reusable.

4. Conclusions and Future Work

The approach presented in this article aimed to define, design, and implement an
architectural proposal utilizing a Dynamic Canonical Data Model (DCDM) representation
through Agnostic Messages. The approach was constructed to improve the low coupling
directed to the data and external levels in integrating software units. This objective was
covered with the proposed design and implemented through design patterns that sup-

Appl. Sci. 2023, 13, 11040 18 of 20

ported the architecture presented, thus creating an intermediate layer between the various
existing platforms. The purpose of this intermediate layer is that, through its traveling of
the information to be integrated, as well as in a fragment of the representation of the data
model (structure), its entities and relationships are represented in a universal message. This
was managed and interpreted using algorithms designed for such a purpose; in this case,
two of the algorithms were proposed. However, other algorithms can be created according
to the need for integration. With this, redesigning or rebuilding the WSDL contract that
was already implemented in the various integrated platforms was avoided, so that, when
there is a change in any of the platforms, the integration can be scalable, easy to maintain,
and, therefore, low cost in development and maintenance by reusing the component.

The DCDM architecture introduced in this article was created to address the integra-
tion requirements of Paquetexpress, a Mexican logistics company specializing in national
and international parcel delivery across more than 240 countries worldwide. This initiative
arose from the necessity to integrate software components, particularly concerning ship-
ment validation with online stores Amazon and Mercadolibre. The design of the DCDM
architecture was informed by the limitations identified in previous research on Enterprise
Application Integration (EAI) outlined in reference [1]. These limitations significantly
impacted the company as integration costs per year had become a substantial expense.

An advantage of the architecture presented in this article, over others detailed in
Section 2, lies in the scenarios that have a large number of clients connected to the WSDL
service contract, and for those that need to add new information (new data). In this regard,
the change would not impact the rest of the systems already connected because only one of
them requires the new data, which would be added to the structure of the message with its
information. In this form, they will usually continue working without any inconvenience.
A disadvantage could be at the moment of generating the message assembly and declaring
the transaction section because, in addition to the information, the fields belonging to the
entities are specified; however, the assembly of these sections could be built as part of
a framework, and it could be more straightforward when implementing this part of the
architecture.

Finally, in the architecture presented in this article, an essential part of the tree structure
was not included regarding the relationships between entities, an essential part of the
dynamic data canonization, where primary keys and foreign keys are represented together
with their restrictions. This improvement is considered future work for better architectural
functioning. In addition, it will be integrated into a framework with a user interface
for simple and fast management. Lastly, there is a consideration to expand the data
representation choices by incorporating JSON (JavaScript Object Notation) within service
architectures, like REST (Representational State Transfer), that operate over the HTTP
(Hypertext Transfer Protocol) protocol.

Author Contributions: Conceptualization, J.A.R.-C., J.A.A.-C. and C.T.-B.; methodology, J.A.R.-
C., J.A.A.-C., C.T.-B. and A.Z.-C.; investigation, J.A.R.-C., J.A.A.-C., C.T.-B. and A.Z.-C.; writing—
original draft preparation, J.A.A.-C. and C.T.-B.; writing—review and editing, J.A.A.-C. and C.T.-B.;
supervision, J.A.A.-C., C.T.-B. and A.Z.-C. All authors have read and agreed to the published version
of the manuscript.

Funding: This work has been supported by the Universidad Autónoma de Sinaloa (Mexico). Coor-
dinación General para el Fomento a la Investigación Científica e Innovación del Estado de Sinaloa
(CONFIE) from the Sinaloa State Government (Mexico) has partially supported the publication,
through the program Programa de Apoyo e Incentivos a Publicaciones Científicas (PAIPC) 2023
second stage.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Appl. Sci. 2023, 13, 11040 19 of 20

Acknowledgments: This study has been developed within the research group Cuerpo Académico
Tecnología Educativa I+D+i (UAS-CA-303). The authors sincerely appreciate the assistance from the
research group members for their support and advice.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ruiz-Ceniceros, J.A.; Aguilar-Calderón, J.A.; Espinosa, R.; Tripp-Barba, C. The External and Data Loose Coupling For the Integra-

tion of Software Units: A Systematic Mapping Study. PeerJ Comput. Sci. 2021, 7, e796. [CrossRef]
2. Irani, Z.; Themistocleous, M.; Love, P.E. The impact of enterprise application integration on information system lifecycles.

Inf. Manag. 2003, 41, 177–187. [CrossRef]
3. Muñoz G.; A.C.; Aguilar, J.; Martínez, R. Modelo Inteligente para Bases de Datos Distribuídas. Rev. Gerenc. Technol. Inform. 2011,

4, 91–116.
4. Celar, S.; Mudnic, E.; Seremet, Z. State-of-the-art of messaging for distributed computing systems. Int. J. Val. Aurea 2017, 3, 5–18.

[CrossRef]
5. Cuadrado, F.; García, B.; Dueñas, J.C.; Parada, H.A. A Case Study on Software Evolution Towards Service-Oriented Architecture.

In Proceedings of the 22nd International Conference on Advanced Information Networking and Applications-Workshops (aina
workshops 2008), Gino-wan, Japan, 25–28 March 2008; pp. 1399–1404.

6. Herrera Quintero, L.F.; Maciá Pérez, F.; Marcos-Jorquera, D.; Gilart, V. SOA-based Model for the IT Integration into the Intelligent
Transportation Systems. In Proceedings of the IEEE ITSC2010 Workshop on Emergent Cooperative Technologies in Intelligent
Transportation Systems, Madeira Island, Portugal, 19–22 September 2010.

7. Devi, C.P.; Venkatesan, V.P.; Diwahar, S.; Shanmugasundaram, G. A Model for Information Integration Using Service Oriented
Architecture. Int. J. Inf. Eng. Electron. Bus. 2014, 6, 34–43. [CrossRef]

8. Kim, J. Mini-SOA/ESB Design Guidelines and Simulation for Wireless Sensor Networks. Ph.D. Thesis, Oklahoma State University,
Stillwater, OK, USA, 2009.

9. Hong, C.; Guo, W. Study on enterprise Order Processing System based on SOA. In Proceedings of the 2010 International
Conference On Computer Design and Applications, Qinhuangdao, China, 25–27 June 2010; Volume 2, pp. V2-48–V2-50.
[CrossRef]

10. Coronado-García, L.C.; González-Fuentes, J.A.; Hernández-Torres, P.J.; Pérez-Leguízamo, C. An autonomous decentralized
service oriented architecture for high reliable service provision. In Proceedings of the 2011 Tenth International Symposium on
Autonomous Decentralized Systems, Tokyo, Japan, 23–27 March 2011; pp. 327–330.

11. Deng, W.; Yang, X.; Zhao, H.; Lei, D.; Li, H. Study on EAI based on web services and SOA. In Proceedings of the 2008 International
Symposium on Electronic Commerce and Security, Guangzhou, China, 3–5 August 2008; pp. 95–98.

12. Beer, M.I.; Hassan, M.F. Adaptive security architecture for protecting RESTful web services in enterprise computing environment.
Serv. Oriented Comput. Appl. 2018, 12, 111–121. [CrossRef]

13. González, L.; Ortiz, G. An ESB-based infrastructure for event-driven context-aware web services. In European Conference on
Service-Oriented and Cloud Computing; Springer: Berlin/Heidelberg, Germany, 2013; pp. 360–369.

14. Monfort, V.; Hammoudi, S. Towards adaptable SOA: Model driven development, context and aspect. In Service-Oriented
Computing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 175–189.

15. Martins, A.; Carrilho, P.; da Silva, M.M.; Alves, C. Using a SOA Paradigm to Integrate with ERP Systems. In Advances in
Information Systems Development; Springer: Berlin/Heidelberg, Germany, 2007; pp. 179–190.

16. Martínez, J.V.B.; Pérez, F.M. Model of integration and management for robotic functional components inspired by the human
neuroregulatory system. In Proceedings of the 2010 IEEE 15th Conference on Emerging Technologies & Factory Automation
(ETFA 2010), Bilbao, Spain, 13–16 September 2010; pp. 1–4.

17. Qu, L.; Chen, Y.; Yang, M. The coordination and integration of agile supply chain based on service-oriented technology.
In Proceedings of the 2009 Third International Symposium on Intelligent Information Technology Application, Nanchang, China,
21–22 November 2009; Volume 1, pp. 351–354.

18. Mazzara, M.; Dragoni, N.; Bucchiarone, A.; Giaretta, A.; Larsen, S.T.; Dustdar, S. Microservices: Migration of a Mission Critical
System. IEEE Trans. Serv. Comput. 2021, 14, 1464–1477. [CrossRef]

19. Dragoni, N.; Giallorenzo, S.; Lafuente, A.L.; Mazzara, M.; Montesi, F.; Mustafin, R.; Safina, L. Microservices: Yesterday, Today, and
Tomorrow. In Present and Ulterior Software Engineering; Mazzara, M., Meyer, B., Eds.; Springer International Publishing: Cham,
Switzerland, 2017; pp. 195–216. [CrossRef]

20. Parizi, R.M. Microservices as an evolutionary architecture of component-based development: A think-aloud study. arXiv 2018,
arXiv:1805.11757.

21. Shadija, D.; Rezai, M.; Hill, R. Towards an understanding of microservices. In Proceedings of the 2017 23rd International
Conference on Automation and Computing (ICAC), Huddersfield, UK, 7–8 September 2017; pp. 1–6.

22. Gómez, E.A. Arquitecturas Software para Microservicios: Una Revisión Sistemática de la Literatura. Ph.D. Thesis, Departamento
de Sistemas Informráticos, Universidad Politécnica de Madrid, Madrid, Spain, 2018.

http://doi.org/10.7717/peerj-cs.796
http://dx.doi.org/10.1016/S0378-7206(03)00046-6
http://dx.doi.org/10.2507/IJVA.3.2.1.34
http://dx.doi.org/10.5815/ijieeb.2014.03.06
http://dx.doi.org/10.1109/ICCDA.2010.5541067
http://dx.doi.org/10.1007/s11761-017-0221-1
http://dx.doi.org/10.1109/TSC.2018.2889087
http://dx.doi.org/10.1007/978-3-319-67425-4_12

Appl. Sci. 2023, 13, 11040 20 of 20

23. Green, S.J. An evaluation of four patterns of interaction for integrating disparate ESBs effectively and easily. J. Syst. Integr. 2013,
4, 3–19.

24. Antipov, V.; Antipov, O.; Pylkin, A. Mobility support in publish/subscribe systems. In ITM Web of Conferences; EDP Sciences:
Les Ulis, France, 2016; Volume 6, p. 03001.

25. Mohan, K.K.; Verma, A.; Srividya, A.; Kumar, G.R. A Practical Perspective on the Design and Implementation of Enterprise
Integration Solution to Improve QoS Using SAP NetWeaver Platform. 2013. Available online: https://www.iiisci.org/journal/
pdv/sci/pdfs/GM042MC.pdf (accessed on 7 June 2023).

26. Cranefield, S.; Ranathunga, S. Embedding Agents in Business Processes Using Enterprise Integration Patterns. In Engineering
Multi-Agent Systems; Cossentino, M., El Fallah Seghrouchni, A., Winikoff, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 97–116.

27. de los Ríos, J.A.C. Esquema de Referencia para Acoplamiento Débil Entre Sistema Informático y Equipo de Producción.
Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2016.

28. Gutiérrez, M.; García-Castro, R.; Mihindukulasooriya, N. A coreference service for enterprise application integration using
linked data. In Informatik Angepasst an Mensch, Organisation und Umwelt, Proceedings of the INFORMATIK 2013, Koblenz, Germany,
16–20 September 2013; Universidad Politecnica de Madrid: Madrid, Spain, 2013.

29. Muñoz, A.; José, A. Modelo Ontológico para la Integración de Bases de Datos Federadas. Cienc. E Ing. 2009, 30, 149–159.
30. Weyns, D.; Georgeff, M. Self-adaptation using multiagent systems. IEEE Softw. 2009, 27, 86–91. [CrossRef]
31. Lehsten, P.; Gladisch, A.; Tavangarian, D. Context-aware integration of smart environments in legacy applications. In Proceedings

of the International Joint Conference on Ambient Intelligence, Amsterdam, The Netherlands, 16–18 November 2011; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 126–135.

32. Ma, S.; Tang, J.; Wang, D. Process based application level architecture for RFID system. In Proceedings of the 2009 5th International
Conference on Wireless Communications, Networking and Mobile Computing, Beijing, China, 24–26 September 2009; pp. 1–5.

33. García, B.; Montoya, M. Integración de repositorios digitales en salud, desafíos y alternativas de interoperabilidad. In Proceedings
of the Bibliotecas y Repositorios Digitales: Gestión del Conocimiento, Acceso Abierto y Visibilidad Latinoamericana, (BIREDIAL).
2011; pp. 50–55. Available online: https://repository.urosario.edu.co/items/dccf9063-9b98-415c-9e89-a3098cf3acc5 (accessed on
7 June 2023).

34. Aksakalli, I.K.; Celik, T.; Can, A.B.; Tekinerdogan, B. A Model-Driven Architecture for Automated Deployment of Microservices.
Appl. Sci. 2021, 11, 9617. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.iiisci.org/journal/pdv/sci/pdfs/GM042MC.pdf
https://www.iiisci.org/journal/pdv/sci/pdfs/GM042MC.pdf
http://dx.doi.org/10.1109/MS.2010.18
https://repository.urosario.edu.co/items/dccf9063-9b98-415c-9e89-a3098cf3acc5
http://dx.doi.org/10.3390/app11209617

	Introduction
	Related Work
	Dynamic Canonical Data Model: An Architecture Proposal for the External and Data Loose Coupling for the Integration of Software Units
	The DCDM Architecture Structure
	The Agnostic Message Component
	The Composite Envelope Component
	The StretegyCDDM Component
	DCDM Architecture Functionality
	Application Example
	Creation of Envelope, Payload, and Message Components
	Generation of the Transaction Structure (MAP)
	Generation of the Agnostic Message (MessageFacade)
	Generation of the Strategy Component (StrategyCDDM)
	Publication of the AgnosticMessageCDDM Service
	Application Example Validation Test Case

	Conclusions and Future Work
	References

