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Abstract: Aridity is a condition in which there is a moisture deficit in the air and soil that affects
large areas of the earth’s surface worldwide. It is a global problem caused mainly by factors related
to climatic events and human actions. In the arid regions of Mexico, prolonged periods of drought
are very common and water scarcity is the predominant feature. The main objective of this study is
to develop a prospective geospatial simulation model for arid zones in the short and medium term
(2030 and 2050) for the northwestern region of Mexico. A retrospective analysis of the variables that
cause aridity was conducted based on historical data from satellite information obtained from various
sources between 1985 and 2020, taking 2020 as the reference year; from this information the rate of
change per year was obtained, followed by the simulated rates of change for the years 2030 and
2050. A methodology used to obtain arid zones using multicriteria evaluation techniques, weighted
linear combination, and Geographic Information Systems. In order to generate the prospective model
for arid zones, the variables were modeled to adjust the rate of change for each of them, with the
same methodology subsequently applied to obtain the base year (2020), and aridity suitability maps
were obtained for the years 2030 and 2050. The main results indicate that the prospective scenarios
point to an increase in arid regions of 0.38% and 0.70%, respectively, which is equivalent to an area
of approximately 240,164.63 km2 and 241,760.75 km2, respectively. This will cause a decrease in
the subhumid–dry and humid regions of 0.10% and 0.19%, respectively, for the projected years.
Statistical and geospatial aridity indicators were also generated at different levels, which helps to
better understand the problem of aridity in vulnerable regions.

Keywords: arid zones; aridity; geospatial model; prospective model; retrospective analysis

1. Introduction

Aridity can be defined as the scarcity of humidity and the temporary reduction of
precipitation in an area [1–5]. Hydroclimatological and hydrogeological data are contem-
plated to understand changes in aridity [4]. Therefore, increased aridity represents a higher
incidence of dry years in a region [6] and is closely related to prolonged periods of drought
that affect environmental factors, agriculture, flora, fauna, population, and the economy [1].
Recent studies using high-resolution regional climate models for future projection of tem-
perature data [7,8] suggest that rising temperatures will increase evapotranspiration rates,
so climate change will increase aridity worldwide [9]. Likewise, [10] indicated that the
maximum intensity and expansion of worldwide aridity have been observed in recent
decades (1991–2019), with major hotspots of aridity located in the equator and subtropical
zones of the world.

It is important to highlight the difference between drought and aridity. Drought is
a recurrent extreme climatic event on earth whose its main characteristic is a decrease in
rainfall over a period of months to years [11] and can occur in any region, not only in arid
or semi-arid regions, causing water scarcity [12]. Another important factor in drought
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is increased evaporation and changes in land cover. The main consequences caused by
drought are soil degradation, changes in ecosystems, reduction of agricultural production,
and decrease in runoff from water catchments, and, in the long term, desertification [13].

On the other hand, aridity is a stable and permanent climatic condition in arid
zones [11,12] that are prone to drought since the amount of rainfall depends significantly on
a few rainfall events. The consequences caused by aridity are the reduction of the biological
and economic productivity of terrestrial ecosystems, which represents a serious danger
for ecological and hydrological processes. In addition, the human misuse of vulnerable
ecosystems of arid and semi-arid lands can cause unsustainable land management [11].
Drought and aridity can be disastrous for ecosystems and society [14].

Consequently, aridity in the short and long term could increase by approximately
10% and 22%, respectively, so it is of utmost importance to implement sustainable man-
agement of water resources and a drought policy in these regions to ensure food security
for the population [1]. Therefore, there is a need to quantify aridity and analyze changes
and variations in temperature and precipitation that alter the hydrological cycle and soil
humidity, which also generates climatic stress [9,15]. Given this problem, analysts consider
it extremely important to develop measures to predict and counteract the effects of aridity
in the most vulnerable regions, as well as to reduce the effects of climate change due to
humidity loss and, therefore, increased drought, vegetation loss, and land degradation [1].

In this sense, the Intergovernmental Panel on Climate Change (IPCC) is the main
international organization for the evaluation of climate change [16] and has, to date, pro-
duced three special reports and a methodological report on national inventories of green-
house gases. Said reports include (I) Physical Bases (9 August 2021), which addresses the
physical understanding of the climate system and climate change, thus bringing together
the latest advances in climate science [17]; (II) Impacts, Adaptation, and Vulnerability
(28 February 2022), in which the impacts of climate change are estimated and ecosystems,
biodiversity, and human communities are analyzed at the global and regional levels, as
well as the vulnerability and capacity to adapt to climate change [18]; and (III) Climate
Change Mitigation (4 April 2022), which assesses the climate-change mitigation progress
and examines the origin of global emissions. It shows the advances in the reduction and
mitigation of greenhouse gas emissions [19]. In addition, a Synthesis Report, which is
based on the content of the assessment reports of the three working groups, according to
the IPCC “synthesise and integrate materials contained within the Assessment Reports and
Special Reports” and “should be written in a non-technical style suitable for policymakers
and address a broad range of policy-relevant but policy-neutral questions approved by the
Panel” [20].

For its part, the United Nations Environment Program (UNEP) is the main envi-
ronmental authority of the United Nations system. It helps strengthen environmental
standards and practices and promotes care for the environment by informing and empow-
ering nations to improve their quality of life. It works with six strategic areas, among which
climate change stands out, and it helps strengthen the capacity of countries to integrate
responses to climate change by providing leadership in adaptation, mitigation, technology,
and financing [21].

Some simulations and prediction techniques based on quantitative models such as
logistic regression, such is the case of [22], wherein useful results were obtained to prevent
the loss and degradation of forests, since areas at risk of being deforested and degraded in
the future were identified, and in [23], who used this technique to predict and issue flood
alerts in real time. In addition, in [24], remote-sensing and machine-learning techniques
were used to detect and map susceptibility and landslides.

Other types of studies include those on Markov chains; cellular automata, in which a
basis is provided for a simulation as close as possible to the reality of changes in land use and
simulation models of urban growth [25]; and spatial morphological pattern analysis [26],
where scenarios are simulated to increase the potential of permanent preservation areas,
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considering a gradual increase in the preserved areas, presenting themselves as alternatives
to ensure the maintenance of ecological and hydrological services.

Artificial neural networks have been employed, such as in [3], where an accurate
prediction of the groundwater level was obtained to determine the quality parameters,
and [27], who used four models, including neural networks and linear regression, to predict
the concentration of dissolved oxygen, and better performance was observed in the results.
Another method used is the Bruun rule to predict future erosion in coastal zones, which
can lead to significant results analyzed in GIS [28]. GIS is also used to predict prospective
scenarios as close as possible to reality by analyzing historical information or time series to
understand the spatial and temporal relationships of the factors [3,25].

Other methods have been used to predict and forecast changes in certain factors over
time [29,30]. Linear regression is a very useful technique to see the effect between two
or more variables, such as in [31], where the Pearson regression analysis formula was
used to analyze and interpret the effect between two or more variables applied to real
life. However, the reliability and results of the regression-modeling process have not been
considered [32]. That is why the use of time series of historical data is very useful for
simulating and predicting changes in environmental issues [3,25,28].

In turn, one of the techniques widely used and recommended by the World Meteo-
rological Organization is the Mann–Kendall trend method, which examines the variation
trend in a time series of data over time and operates a considerable test range, without
the data needing to follow a specific distribution [33–35]. Such is the case of [36], in which
technique was used to analyze the trends of change and the points of mutation of drought
and climatic conditions, and was used to identify the trend of the standardized precipitation
index and humidity index of the series [33].

Consequently, and given that retrospective analysis of changes is not enough but that
medium- and long-term analysis is also necessary [37–39], one option is the generation of
spatial models, such as the simulation of future scenarios that will allow the changes in a
geographic area to be understood [40]. However, these models should not be taken as a
forecast or prediction but rather interpreted as information and coherent descriptions of a
possible future state [41].

Prospective models enable an existing phenomenon to be repeated to generate future
alternatives and analyze the potential consequences of each of them [42,43]. In this regard,
several works and methodologies have been developed to perform geospatial simulations
of future scenarios for studies of different purposes. Most of them simulate forest processes
to understand the associated impacts and implement measures to mitigate these forest-
loss processes [44]. Similarly, other studies have analyzed changes in precipitation and
temperature to examine the effects of future droughts [3,25,28,33–35].

As a consequence of the abovementioned, one contribution to this study is the analysis
of changes in the factors considered responsible for aridity, specifically based on the histori-
cal variations in the data. In this regard, and given the importance of having updated maps
of arid zones in the short and long term, the main objective of this research is to generate
prospective geospatial aridity models that include the multicriteria evaluation technique
(MCE), weighted linear combination technique (WLC), and GIS for the northwestern region
of Mexico that can be applied nationally and globally.

The reference year for this study was 2020, based on the methodology developed
by [45], and was used to generate the map of arid regions. Subsequently, in order to obtain
the prospective geospatial model for aridity in the short and long term (2030 and 2050),
a retrospective analysis of historical data was performed to obtain the rates of change of
the factors considered constant changes (precipitation, temperature, normalized difference
vegetation index (NDVI), evapotranspiration, and humidity) for data integration using
MCE and GIS techniques.
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2. Materials and Methods
2.1. Study Area

The study area constituted three Hydrological Administrative Regions (HAR) located
in northwestern Mexico: (I) Baja California, (II) Northwest, and (III) North Pacific (Figure 1),
located at geographical coordinates 32◦39′ and 21◦22′ North latitude and 118◦52′ and
103◦20′ West longitude. It borders the Pacific Ocean to the west; Phoenix, Arizona to
the north; Chihuahua and Durango to the east; and Nayarit to the south, representing
approximately 26% of the Mexican territory [46].
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Figure 1. Location of the study area. Northwest Mexico: HAR: (I) Baja California Peninsula, (II)
Northwest, and (III) North Pacific.

2.2. Data

For this study, a map of arid regions was generated, taking 2020 as the reference
year. The variables used and the methodology were based on the information used in
the geospatial model of arid zones described in [33], which was conducted taking into
consideration a review by experts and a bibliographic review (Table 1). The weights of the
weighted factors used in this research are shown in Table 2, which were obtained using the
analytical hierarchy technique to determine the level of importance of each factor.
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Table 1. Data used for prospective geospatial models of arid zones. Source [45]. URL: https:
//www.mdpi.com/2220-9964/10/11/720.

Data
(Year 2020)

Data
Type

Spatial
Resolution

Temporal
Resolution Units Source Link

Precipitation Raster 4 km Monthly, 2019 Millimeters TerraClimate
https://app.climateengine.

org/climateEngine (accessed
on 16 March 2022).

Temperature Raster 1 km

8 days, annual
average 2019

annual average
2019

◦K Dataset
https:

//earthexplorer.usgs.gov/
(accessed on 16 March 2022).

Evapotranspiration Raster 4 km Monthly, 2019 Millimeters MODIS/ USGS
https://app.climateengine.

org/climateEngine (accessed
on 16 March 2022).

DEM Raster 90 m Year 2008 Meters TerraClimate https://srtm.csi.cgiar.org
(accessed on 16 March 2022).

NDVI Raster 500 m 16 days NDVI Dataset
https:

//earthexplorer.usgs.gov/
(accessed on 16 March 2022).

Humidity Raster 9 km Monthly, 2019 Millimeters SRTM
https://app.climateengine.

org/climateEngine (accessed
on 16 March 2022).

Slopes Raster 90 m Year 2008 Degree MODIS/ USGS https://srtm.csi.cgiar.org
(accessed on 16 March 2022).

Aspect Raster 90 m Year 2008 Degree FLDAS https://srtm.csi.cgiar.org
(accessed on 16 March 2022).

Table 2. Matrix of factor weights. Source [45]. URL: https://www.mdpi.com/2220-9964/10/11/720.

Factor Weights

Precipitation 0.28
Temperature 0.22

Evapotranspiration 0.19
Humidity 0.13

NDVI 0.09
Slope 0.06

Aspect 0.03

Historical data were used to generate the prospective geospatial model for arid zones,
such as minimum precipitation, maximum temperature, evapotranspiration, and humidity
from 1985 to 2020 in periods of 5 years, and for NDVI data, according to the availability of
information, from 2000 to 2020 in periods of 3 years (Table 3).

To generate quantitative and geospatial indicators of aridity at different levels, it was
necessary to use the maps of arid regions generated together with the maps of Hydrological
Administrative Regions, state political division, municipal political division, and land use
and vegetation (Table 4)

2.3. Methodology

The methodology used for the prospective geospatial model of aridity for the years
2030 and 2050 began by obtaining maps of vulnerability to aridity for the reference year
2020, based on the methodology developed in [45]. Initially, the data involved in the
aridity process were standardized. Then, a normalization of the variables was performed,
and using the weighting of the factors (Table 2), the MCE was applied with the weighted
linear combination (WLC) technique. This way, the aridity map was obtained, which
was reclassified into the different arid regions based on the United Nations Environment
Program (UNEP) Aridity Index (AI) classification. Subsequently, a retrospective analysis of

https://www.mdpi.com/2220-9964/10/11/720
https://www.mdpi.com/2220-9964/10/11/720
https://app.climateengine.org/climateEngine
https://app.climateengine.org/climateEngine
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://app.climateengine.org/climateEngine
https://app.climateengine.org/climateEngine
https://srtm.csi.cgiar.org
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://app.climateengine.org/climateEngine
https://app.climateengine.org/climateEngine
https://srtm.csi.cgiar.org
https://srtm.csi.cgiar.org
https://www.mdpi.com/2220-9964/10/11/720
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historical data from 1985 to 2020 was performed (Table 3). The average annual rate and the
average rate for the years 2030 and 2050 were calculated. Afterwards, the variables were
processed, applying the corresponding rate of change, thus obtaining the new variables for
each evaluation period. Similarly, the factors were normalized and the MCE was applied
using the WLC. The resulting maps were classified according to the UNEP AI to obtain the
prospective aridity maps for the years 2030 and 2050. Finally, indicators were negotiated at
different levels, such as at the general, municipal, HAR, and land-use levels (Figure 2).

Table 3. Data are used as a reference to generate the prospective scenario for arid zones.

Data. Units Data
Type

Temporal
Resolution

Spatial
Resolution Source Link

Minimum
precipitation Millimeters Raster Monthly 4000 Meters TerraClimate

Dataset

https://app.climateengine.
org/climateEngine (accessed

on 16 March 2022).

Maximum
temperature

◦C Raster Monthly 4000 Meters TerraClimate
Dataset

https://app.climateengine.
org/climateEngine (accessed

on 16 March 2022).

Maximum
Evapotranspiration Millimeters Raster Monthly 4000 Meters TerraClimate

Dataset

https://app.climateengine.
org/climateEngine (accessed

on 16 March 2022).

Minimum
Humidity Millimeters Raster Monthly 4000 Meters TerraClimate

Dataset

https://app.climateengine.
org/climateEngine (accessed

on 16 March 2022).

NDVI NDVI Raster 16 days 500 Meters Modis Terranet
https://app.climateengine.

org/climateEngine (accessed
on 16 March 2022).

Table 4. Data are used to generate quantitative and geospatial indicators.

Data. Data
Type Year Scale Author Source Link

Hydrological
Administrative

Regions
Vector 2007 1:250,000 CONAGUA CONABIO

http://www.conabio.gob.mx/
informacion/gis/ (accessed on 25

May 2022).

State political
division Vector 2020 1:250,000 INEGI CONABIO

http://www.conabio.gob.mx/
informacion/gis/ (accessed on 25

May 2022).

Municipal
political
division

Vector 2020 1:250,000 INEGI CONABIO
http://www.conabio.gob.mx/

informacion/gis/ (accessed on 25
May 2022).

Land use and
vegetation,
series VII

Vector 2021 1:250,000 INEGI CONABIO
http://www.conabio.gob.mx/

informacion/gis/ (accessed on 25
May 2022).

Legend: CONAGUA (National Water Commission), CONABIO (National Commission for the Knowledge and
Use of Biodiversity), INEGI (National Institute of Statistic and Geography).

https://app.climateengine.org/climateEngine
https://app.climateengine.org/climateEngine
https://app.climateengine.org/climateEngine
https://app.climateengine.org/climateEngine
https://app.climateengine.org/climateEngine
https://app.climateengine.org/climateEngine
https://app.climateengine.org/climateEngine
https://app.climateengine.org/climateEngine
https://app.climateengine.org/climateEngine
https://app.climateengine.org/climateEngine
http://www.conabio.gob.mx/informacion/gis/
http://www.conabio.gob.mx/informacion/gis/
http://www.conabio.gob.mx/informacion/gis/
http://www.conabio.gob.mx/informacion/gis/
http://www.conabio.gob.mx/informacion/gis/
http://www.conabio.gob.mx/informacion/gis/
http://www.conabio.gob.mx/informacion/gis/
http://www.conabio.gob.mx/informacion/gis/
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2.4. Geospatial Model of Drylands Based on Multicriteria Evaluation and GIS for the Year 2020
2.4.1. Data Download and Processing

In order to obtain the base map of aridity vulnerability for the year 2020, data were
downloaded from the different download sources described in Figure 2. Following the
methodology developed by [45], the variables were processed and standardized according
to the technical specifications of the map of the study area, which is a bitmap of 0 and 1,
where 0 represents areas excluded from the model and 1 represents the area where the
information processing is included.

2.4.2. Standardization of the Criteria through the Fuzzy-Logic Method

Once the variables were processed, the standardization of the factors was performed
using the fuzzy-logic method, which is used to standardize values [45,47–50]. This analysis
applied this method to a scale of 0 to 1 bytes to indicate the susceptibility to aridity. Table 5
shows the function used. A decreasing linear function means lower scale values, indicating
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a greater possibility of aridity extremes. On the contrary, an increasing linear function
means higher values, indicating a lower susceptibility to aridity. The variables standardized
using the fuzzy logic method are shown in Figure 3.

Table 5. Standardization of the factors by the fuzzy-logic method for the year 2020.

Factor
(Annual
Average)

Minimum
Value

Maximum
Value Units Function

Minimum
Standardized

Value

Maximum
Standardized

Value

Precipitation 16 1430 Millimeters Linear increasing 0 1
Temperature 20.60 45 ◦C Linear decreasing 0 1

NDVI −0.86 0.87 NDVI Linear increasing 0 1
Evapotranspiration 1144.60 2002.8 Millimeters Linear decreasing 0 1

Humidity 0.10 294.95 Millimeters Linear increasing 0 1
Slopes 0 144.96 Degree Linear decreasing 0 1
Aspect 0 359.97 Degree Linear decreasing 0 1
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2.4.3. Weighted Linear Combination

Weighted linear combination is the most common GIS-based multicriteria evaluation
method for soil-suitability analysis, which consists of combining a set of criteria and
constraint maps [50–53]. As a constraint, the binary map of the study area was used, where
0 indicates excluded areas and 1 corresponds to the area included in the aridity model. In



Sustainability 2022, 14, 15223 9 of 22

this study, to identify the arid regions in 2020, the WLC method was used, which calculates
the suitability of a potential region using Equation (1) [47,53,54]:

R =
n

∑
j=1

yizi (1)

where R is the weighted variable, yi is the weight of the factor, zi is the weighted value of
alternative i of factor j, and n represents the number of indexes.

2.4.4. Classification Method

The aridity vulnerability map of 2020 obtained as a result of the WLC method was
classified using the AI classification proposed by UNEP [4,55–59], which defines arid
regions in five classes, as shown in Table 6.

Table 6. UNEP aridity index classification [4,60,61].

AI. Classification

<0.05 Hyperarid
0.05–0.2 Arid
0.2–0.5 Semiarid
0.5–0.65 Subhumid–dry

>0.65 Humid

2.5. Prospective Geospatial Model of Arid Zones in the Years 2030 and 2050
2.5.1. Calculation of Change Rates per Period

There are several methods for predicting and forecasting changes in certain factors
over time [29,30,62]. The use of time series of historical data has been very useful for
simulating and predicting changes in environmental matters [3,25,28]. The Mann–Kendall
(MK) trend method is widely used [36] to examine the trend of variation in a data series
over time. It operates a very wide test range and the data do not need to follow a specific
distribution [33–35].

The present study was based on the Mann–Kendall trend test, and the original formula
was adapted to this study to analyze time series of historical data of the variables in periods
of five years (minimum precipitation, maximum temperature, evapotranspiration, and
humidity) and three years (NDVI) (Table 7). From that information, the average change per
period was obtained and, subsequently, the rate of change per year. This way, the change
factor for the years 2030 and 2050 was obtained. For the time series p1, ..., pn, Equation (2)
was used:

Ta =
∑n−1

i=1 ∑n
j=i+1

(pj−pi)
t

n
(2)

where Ta is the average annual rate obtained, pi is period 1 and pj is period 2 of the time
series, t is the number of years between periods, and n is the total number of periods of the
historical data series analyzed.

2.5.2. Standardization of Factors

Factor standardization refers to the process of determining the level of importance of
each criterion. It is a widely used technique of pairwise comparison to rate and standardize
values [47–50]. A fuzzy set was applied to the processed variables for the years 2030
and 2050 at a scale of 0 to 1 bytes to show the vulnerability to aridity. Table 8 shows the
maximum and minimum values for each factor and, in addition, the function used.
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Table 7. Historical data used to calculate the rate of change for the years 1985–2020 and 2000–2020.

Data
Year

1985 1990 1995 2000 2005 2010 2015 2020

Minimum
precipitation (mm) 28 26 17 26 36 8 24 16

Maximum
temperature (◦C) 44.2 43.2 44.2 41.9 43.2 42.1 43.6 45

Maximum
evapotranspiration (mm) 1922.7 1943.5 1949 1976.2 1964.5 1928.2 1905.5 1988.3

Minimum
Humidity (mm) 181.2 150 75.5 88.8 100.6 107.4 146.6 155.4

2000 2003 2006 2009 2012 2015 2018 2020

NDVI minimum −0.984 −0.821 −0.829 −0.919 −0.863 −0.864 −0.831 −0.864

NDVI maximum 0.898 0.874 0.884 0.886 0.871 0.889 0.880 0.878

Table 8. Standardization of factors for the years 2030 and 2050.

Factor
(Annual
Average)

Year 2030 Year 2050
Function Normalized

Minimum
Value

Normalized
Maximum

Value
Minimum

Value
Maximum

Value
Minimum

Value
Maximum

Value

Precipitation 0 1426.57 0 1419.71 Linear increasing 0 1
Temperature 0.23 45.23 0.69 45.69 Linear decreasing 0 1

NDVI −0.804 0.862 −0.685 0.8426 Linear increasing 0 1
Evapotranspiration 18.74 2021.54 56.23 2059.03 Linear decreasing 0 1

Humidity 0.01 287.584 0 272.844 Linear increasing 0 1
Slope 0 144.96 0 144.96 Linear decreasing 0 1

Aspect 0 359.97 0 359.97 Linear decreasing 0 1

2.5.3. Weighted Linear Combination and Criteria Ranking

Based on the normalized factors for the years 2030 and 2050, the WLC method was
used to generate the prospective geospatial aridity model using the same methodology for
the 2020 arid-zone model, which calculated the suitability of a region to present aridity
levels using Equation (1). This way, aridity vulnerability maps were obtained for the
projected years. Once the aridity maps were obtained, the UNEP AI classification was used
to obtain the maps of arid regions for the years 2030 and 2050.

2.5.4. Quantitative and Geospatial Indicators

The cross-tabulation method was applied to generate the different quantitative and
geospatial indicators of arid zones, called a confusion matrix, transition matrix, or con-
tingency table [63]. This method generates a tabular matrix in proportion to the total
number of pixels, which compares the relationship between two maps that have different
categories [64] and which in turn shows the number of pixels that correspond to each
combination of categories of the two images being compared [63]. Multilevel arid-region
indicators (general, HAR, municipal, land use) were obtained. Each indicator was ob-
tained with the combination of the arid-zone map for each date generated and the map
representing that indicator (Table 4).
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3. Results
3.1. Prospective Geospatial Model of Aridity
3.1.1. Annual Rates for the Variables Used

Based on the time-series analysis of the variables and periods used (1985–2020 and
2000–2020), annual rates were obtained (Table 9) that show the changes by period, the
annual rate of change, and the trends of change towards the years 2030 and 2050; these
data were used to generate the prospective maps. According to the results, it can be said
that, in a prospective scenario, a decrease in precipitation of 0.34 mm per year was seen
that meant that by the year 2050, there would be a decrease of 10.29 mm (Figure 4a). In
contrast, the temperature was estimated to increase by 0.023 ◦C per year, projected to the
year 2050, reflecting an increase of 0.69 ◦C (Figure 4b); similarly, evapotranspiration would
increase by 56.23 mm (Figure 4c) and humidity would decrease by 22.11 mm (Figure 4d) by
the year 2050 in the study region, whereas vegetation cover would be decreased according
to the change values observed in the NDVI (Figure 4e).

3.1.2. Variables Obtained for the Years 2030 and 2050

The results of processing and standardizing the data using 2020 as the reference year
and applying the rate of change are shown in Table 8. The variables for the years 2030 and
2050 were obtained, and an example of the variables for the year 2030 is shown (Figure 5).
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Table 9. Rates of change during the period from 1985 to 2020.

Data 1990 1995 2000 2005 2010 2015 2020
Annual

Exchange
Rate

Exchange
Rate to

2030

Exchange
Rate to

2050

Minimum
precipitation −0.4 −1.8 1.8 2 −5.6 3.2 −1.6 −0.34 −3.43 −10.29

Maximum
temperature −0.2 0.2 −0.46 0.26 −0.22 0.3 0.28 0.023 0.23 0.69

Maximum
Evapotranspiration 4.16 1.1 5.44 −2.34 −7.26 −4.54 16.56 1.87 18.74 56.23

Minimum
Humidity −6.24 −14.9 2.66 2.36 1.36 7.84 1.76 −0.74 −7.37 −22.11

2003 2006 2009 2012 2015 2018 2020
Annual

Exchange
Rate

Exchange
Rate to

2030

Exchange
Rate to

2050
NDVI minimum

value 0.054 −0.003 −0.030 0.019 0.000 0.011 −0.011 −0.006 −0.060 −0.180

NDVI maximum
value −0.008 0.003 0.001 −0.005 0.006 −0.003 −0.008 −0.001 −0.010 −0.030Sustainability 2022, 14, x FOR PEER REVIEW 13 of 23 
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3.1.3. Normalized Factors

Applying the fuzzy-logic method, the normalized factors were obtained for the years
2030 and 2050, and an example of the variables for the year 2030 is shown (Figure 6).
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3.2. Quantitative and Geospatial Indicators of Aridity for the Year 2020 and Prospective Aridity for
the Years 2030 and 2050

Based on the classification of the arid regions employed, an aridity vulnerability map
was generated for the year 2020, which was used as the basis for obtaining the prospective
aridity maps (Figure 7a). The indicators show that arid and semiarid regions predominated
in the study region, with more than 90% of the surface area, whereas subhumid–dry and
humid regions covered approximately 3% (Table 10).

For their part, the prospective maps show that by the year 2030, the arid regions would
represent 48.12% of the study area, which means an increase of 0.38% for 2020, whereas
the semiarid regions would show a loss of 0.28%; likewise, the subhumid–dry and humid
regions would decrease by approximately 0.10% (Figure 7b).

The results obtained for the year 2050 show that the arid regions represented 48.44%
of the surface of the study area, which means an increase of 0.7% for the year 2020; likewise,
the semiarid regions continued without much change, at 0.51% loss of surface, whereas
the subhumid–dry and humid regions continued their tendency to decrease at 0.19%
(Figure 7c).



Sustainability 2022, 14, 15223 14 of 22Sustainability 2022, 14, x FOR PEER REVIEW 15 of 23 
 

 
Figure 7. Aridity vulnerability map obtained. Legend: (a) year 2020, (b) year 2030, and (c) year 2050. 

Table 10. Areas and percentages of change by a period concerning the reference year 2020. 

Region 
Reference  
Year 2020 

Trend Year 
2030 2050 

km2 % km2 % % Exchange km2 % % Exchange 
Arid 238,290.25 47.74 240,164.63 48.12 0.38 24,1760.75 48.44 0.70 

Semiarid 246,389.31 49.37 244,995.75 49.09 −0.28 24,3867.44 48.86 −0.51 
Subhumid–dry 11,160.56 2.24 11,008.13 2.21 −0.03 10,838.06 2.17 −0.06 

Humid 3254.81 0.65 2926.44 0.59 −0.07 2628.69 0.53 −0.13 

3.2.1. HAR-Level Indicators 
The map of arid regions by HAR was also obtained, and it was observed that in 2020, 

in region I, arid regions predominated with 111,729.19 km2 (77.39% of the total area of the 
region), whereas semiarid regions covered 32,575.69 km2 (22.56%); likewise, dry subhu-
mid regions represented less than 1% in this region, and there were no humid areas (Table 
11). Similarly, in region II, the arid zones predominated with 117,571.06 km2 (57.03%), 
whereas the semiarid zones represented 88,390.69 km2 (42.58%); in this region, less than 
1% of dry subhumid and humid zones were observed. For its part, region III represented 
a larger area of semiarid zones with 125,422.94 km2 (84.42%), whereas arid regions repre-
sented 8990.00 km2 (6%); in this region, there was a larger area of subhumid–dry and hu-
mid regions, with about 10% between both categories (Figure 8a and Table 11). 

Figure 7. Aridity vulnerability map obtained. Legend: (a) year 2020, (b) year 2030, and (c) year 2050.

Table 10. Areas and percentages of change by a period concerning the reference year 2020.

Region

Reference
Year 2020

Trend Year

2030 2050

km2 % km2 % %
Exchange km2 % %

Exchange

Arid 238,290.25 47.74 240,164.63 48.12 0.38 24,1760.75 48.44 0.70
Semiarid 246,389.31 49.37 244,995.75 49.09 −0.28 24,3867.44 48.86 −0.51

Subhumid–dry 11,160.56 2.24 11,008.13 2.21 −0.03 10,838.06 2.17 −0.06
Humid 3254.81 0.65 2926.44 0.59 −0.07 2628.69 0.53 −0.13

3.2.1. HAR-Level Indicators

The map of arid regions by HAR was also obtained, and it was observed that in 2020,
in region I, arid regions predominated with 111,729.19 km2 (77.39% of the total area of the
region), whereas semiarid regions covered 32,575.69 km2 (22.56%); likewise, dry subhumid
regions represented less than 1% in this region, and there were no humid areas (Table 11).
Similarly, in region II, the arid zones predominated with 117,571.06 km2 (57.03%), whereas
the semiarid zones represented 88,390.69 km2 (42.58%); in this region, less than 1% of dry
subhumid and humid zones were observed. For its part, region III represented a larger
area of semiarid zones with 125,422.94 km2 (84.42%), whereas arid regions represented
8990.00 km2 (6%); in this region, there was a larger area of subhumid–dry and humid
regions, with about 10% between both categories (Figure 8a and Table 11).
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Table 11. Areas and percentages of change by HAR for 2020, 2030, and 2050.

Year Region
HAR (Surface km2)

I II III

2020

Arid 111,729.19 117,571.06 8990.00
Semiarid 32,575.69 88,390.69 125,422.94

Subhumid–dry 61.13 183.19 10,916.25
Humid 0 19 3235.81

2030

Arid 112,457.69 118,521.06 9185.88
Semiarid 31,852.94 87,449.00 125,693.81

Subhumid–dry 55.38 175.31 10,777.44
Humid 0 18.56 2907.88

2050

Arid 113,107.50 119,298.44 9354.81
Semiarid 31,221.06 86,711.63 125,934.75

Subhumid–dry 37.44 136.38 10,664.25
Humid 0 17.5 2611.19
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In Table 11, the prospective indicators obtained at the HAR level are also shown, which
reflect that the arid zones would continue to increase in HAR-II Northwest for the years
2030 and 2050, with an area of 118,521 km2 and 119,298.44 km2, respectively, showing an
increase of 0.7% for 2020 (Figure 8b,c). The semiarid regions were primarily reflected in
HAR-III North Pacific, which showed an increasing trend for the year 2050 of 0.2% for
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2020, with areas of 125,693.81 km2 for the year 2030 and 125,934.75 km2 for the year 2050.
Nevertheless, the trend of semiarid and subhumid–dry areas in HAR-I and HAR-II showed
a decrease, which can be understood as an increase in aridity in these regions.

The trends of humid and subhumid–dry regions were reflected in a greater surface
area in HAR-III North Pacific, which was decreasing; this can be concluded to reflect an
increase in the arid and semiarid regions of this zone.

3.2.2. Municipal-Level Indicators

The aridity indicators at the municipal level for 2020 (Figure 9a), 2030 (Figure 9b), and
2050 (Figure 9c) were determined, and the most arid and semiarid municipalities in the
northwestern region of Mexico stood out. These indicators show that the municipalities
with more than 90% of aridity were located in the states of Sonora (Atil, Oquitoa, Etchojoa,
Altar, Caborca, Hermosillo, San Miguel de Horcasitas, Puerto Peñasco, Navojoa, San Luis
Río Colorado, General Plutarco Elías Calles, Sáric, Empalme, San Ignacio, Río Muerto,
Trincheras, Guaymas, Benito Juárez, Huatabampo, Cajeme, Benjamín Hill), Baja California
(Mexicali), Baja California Sur (Mulegé, Comondú, Loreto), and Sinaloa (Ahome).
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3.2.3. Land-Use Indicators

One way to validate the results of the models obtained is the generation of aridity
indicators of land use for the years 2020, 2030, and 2050. In 2020, it was indicated that arid
regions were mostly concentrated in scrubland (86%), wetlands (76%), and bare soil types
(73%). On the other hand, the regions with the largest humid areas were found in forests
(7.3%), secondary vegetation (3%), and jungles (2.3%).

By 2030, scrublands would increase in arid regions by 0.43% (876.06 km2), gaining cov-
erage over semiarid regions, whereas forests would reflect a decrease over subhumid–dry
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regions to become semiarid, with an increase of 0.1% (332.19 km2); meanwhile, grass-
land coverage would lose area in semiarid regions to become arid regions with 0.77%
(298.56 km2) (Table 12). Similarly, the regions with the greatest humid surface area would
continue to be forests (2.13%), secondary vegetation (0.70%), and jungles (0.5%).

Table 12. Areas (km2) of soil-cover transition over arid regions.

Transitions from Coverage to Arid Regions

Type of
Coverage Region Region Gains by

2030 (km2)
Gains by

2050 (km2)

Scrubland Semiarid → Arid 876.06 1627.00

Forest Subhumid–
dry → Semiarid 332.19 624.44

Grassland Semiarid → Arid 298.56 537.81

Forest Subhumid → Subhumid–
dry 234.38 433.19

Agriculture Semiarid → Arid 216.63 402.00
Secondary
vegetation Semiarid → Arid 151.06 280.81

In terms of indicators for the year 2050, arid regions would continue to increase the cov-
erage of scrubland, gaining surface area over semiarid regions by 0.8% (1,627 km2). Forests
would gain 624.44 km2 in semiarid regions over subhumid-dry regions, and grasslands
would increase by 537.81 km2 over arid regions (Table 12).

4. Discussion

At a global level, aridity indices have been obtained [56,65] that show the state of
aridity worldwide on a large scale and with a very low temporal resolution, and in some
cases, updates of these aridity indices are null but still serve to provide a general idea of
the state of aridity on a global level.

In Mexico, the Drought Monitor inspects the areas with significant drought problems,
which shows indicators of deficit or excess rainfall [66,67], and in turn, the Multivariate
Drought Monitor also considers soil humidity and runoff [68].

Some studies in Mexico use different aridity indices (AI) to understand the magnitude
of arid regions. In [69] and through the AI proposed by UNEP (The United Nations Envi-
ronment Programme), the duration, severity, frequency, and affected area of meteorological
droughts for which rainfall and evapotranspiration are used as parameters are analyzed. As
in [61], this same AI defines Mexico’s arid and humid zones and quantifies the population.

Similarly, in [70], soil degradation in drylands was studied by applying the Thornth-
waite AI, mainly based on potential evapotranspiration and water-vapor balance. On the
other hand, in [71], the water deficit was quantified with temperature and precipitation
data corresponding to the different climate-change scenarios by means of an AI by De
Martonne; they calculated the Index of Hydroenvironmental Availability (IDHA) and the
Hydroenvironmental Drought Index (ISHA) to determine its tendency.

In this regard, the National Arid Zones Commission, within the framework of the
Sustainable Use of Natural Resources for Primary Production Programme, implements
actions to conserve soil, water, and vegetation and, through the Arid Zone Development
Component, promotes and generates projects that promote rural development in drylands
with a comprehensive and territorial approach [72].

However, none of the studies mentioned conducted a retrospective analysis of the
behavior of the variables or the arid zones themselves, nor did they study the future
state of the regions; these are couple of advantages that this research presents, as well as
complementing the constant updating of the temporal resolution of the data used (monthly)
and the immediate availability and free access, in addition to considering seven factors of
major importance, which were integrated to generate the model (Figure 2).
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This study analyzed the variations over time of the factors involved in the aridity
process, which indicates that precipitation and humidity would decrease, thus impacting
subhumid–dry regions and humid areas, which will continue to lose surface area, favoring
the increase of arid regions. This could be considered an early warning to pay more
attention to these statistics since, if the trend towards humidity loss were to continue,
drought situations could be accentuated, leading to major problems such as the degradation
of regions with a direct impact on society and economy.

In addition, indicators of multilevel aridity were obtained, which allow us to under-
stand in more detail the levels of aridity by region at the municipal level and land use; in
the latter, it was possible to observe which land uses had and will have the greatest impact
on arid zones in the scrub. Aquaculture and removal of vegetation are the land uses that
predominate in the arid zones and, in addition, human settlements will continue to increase
in these regions according to the aridity tendency.

Therefore, the results show that the present study contributes significantly to man-
aging arid ecosystems and supporting decision-making, as it provides information on an
approximation of the current and future state of arid and semiarid regions. One of the
main contributions of this research is the generation of a prospective geospatial model that
contemplates one of the processes of greatest importance within drylands, aridity, using
new methodological aspects of the problem facing northwestern Mexico.

On the other hand, it is important to note that the simulation of the prospective model
requires a significant effort, especially to analyze the criteria and their variations over time
and to determine an approach to the future. In addition, the problem that can cause an
increase in aridity in the territory can be discussed exhaustively, since the future scenarios
that contemplate aspects of aridity, drought, and land degradation are under interrelated
social and ecological systems and issues.

5. Conclusions

In Mexico, several aridity studies have been carried out using different indices to
understand the current state of arid zones. However, no prospective models have been gen-
erated to determine this condition in the short and medium term; therefore, the prospective
maps of the model proposed in this study provide important and useful information on
the current and future state of the dry regions for northwestern Mexico and showed how
arid and semi-arid zones will continue to predominate, with an increase in aridity and a
decrease in humid regions.

In the same way, the temporal analysis and the data obtained from the prospective
aridity model according to the time series of historical data analyzed showed an increase in
temperature and evapotranspiration in the short and medium term, as well as a decrease
in precipitation, humidity, and vegetation cover, representing an increasing trend of arid
regions that are located within the Sonoran Desert, mostly in the northwest and center
of the study area, in which dry and semi-dry climates predominate. For their part, the
subhumid–dry and humid regions, located to the southeast of the region and mainly in
the state of Chihuahua, face a decrease in surface area that indicates that the resulting
geospatial model simulations are logical.

Therefore, we can confirm that the methods used helped generate valuable information
to solve problems of management of arid regions. Likewise, the applied EMC techniques
were fundamental for developing the prospective aridity model. The results obtained
allowed the change rates of aridity factors to be estimated and, in turn, it was possible to
generate maps of vulnerability to aridity towards the years 2030 and 2050.

Additionally, the land-use indicators allowed the results of the model to be quanti-
tatively validated, which validates the theoretical hypothesis about the most significant
changes in land uses located in arid and semiarid zones, such as scrubland, forest, grass-
land, agriculture, and secondary vegetation. In such a way, we can confirm that the model
of arid zones as well as the prospective model of aridity for the years 2030 and 2050 is
adequate to analyze the current and future states of these regions.
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Finally, the methodology used in this analysis is presented as an initiative to generate,
integrate, and model geospatial variables that favor the aridity process that is directly
related to climate change at the local, regional, and global levels. This can also be considered
an alternative for the continuous study of arid regions in the future and can be extrapolated
at a global level and, with this, obtain indicators that serve as a basis for developing
public policies, in addition to being of great support for making important decisions in
the management, mitigation, planning, and adaptation to arid ecosystems that guarantee
human, environmental, economic, and social well-being in said regions from a sustainable
point of view.

6. Future Research Directions

The methodology to obtain arid zones was proposed by Perez-Aguilar et. al (2021) [45]
and was successfully complemented with the prospective aridity model for arid regions
of northwestern Mexico proposed here. Given that this model can be adapted to any
geographic area and that the data are available globally, it is intended to replicate this
analysis throughout Mexico and thus acquire a scope at the national level of the severity and
magnitude of the current aridity in the short and medium term, with another scope to be
able to do so in the long term. In addition, it is proposed to complement this methodology
with other climatic and aridity indices in order to obtain a more robust model that allows
us to understand in more detail the future of arid regions in Mexico. Another future
objective is to bring these results to different national organizations in charge of conserving
and promoting development in the arid zones of the country in order to establish action,
adaptation, and mitigation policies for the population in arid regions.
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