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Essential and trace metals in a post-nesting olive ridley turtles
(Lepidochelys olivacea) in Ceuta beach, Sinaloa, Mexico
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Abstract
Trace metals have been found in sea turtle blood and tissues and may represent a threat to these endangered species. Essential
trace metal (Cu, Zn Cd, Pb, As, and Hg) concentrations were determined in blood of adult female, post-nesting olive ridley turtles
Lepidochelys olivacea (n = 35) on Ceuta beach, Sinaloa, Mexico. Essential metals (Zn and Cu) analyzed were found in higher
concentrations than toxic metals (Cd and Pb), while As and Hg concentrations were below the limits of detection (0.01 μg g-1).
Low Pb concentrations (0.09 μg g-1) were previously observed in sea turtles in the Gulf of California. There were no significant
correlations found between curved carapace length (61.00–71.00 ± 2.29) vs metal concentrations (p > 0.05). Cd levels were
relatively high when compared to other species and populations of sea turtles worldwide and Cd may represent the greatest risk
for sea turtles in the Mexican Pacific. Such concentrations of Cd may pose a further risk to sea turtles through bioaccumulation
from the nesting female to offspring which may affect embryo development.
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Introduction

Ocean pollution is a global problem (Wilcox and Aguirre
2004). One major group of environmental contaminants are
metals and metalloids; both documented to be a threat to
humans, domestic animals, wildlife, and ecosystems (Ross
et al. 2017). Multiple studies have detected trace metals in
marine sediments (Páez-Osuna et al. 2017), aquaculture prod-
ucts (Delgado-Alvarez et al. 2015a, 2015b), and fish (Soto-
Jimenez et al. 2003, 2011; Quintero-Alvarez et al. 2012) in the
Gulf of California.

The trace metals most commonly studied in ecotoxicology
are Hg, Pb, As, and Cd, which are considered toxic and a
threat to marine vertebrates (Godley et al. 1999a; Yokel
et al. 2006; Eisler 2010; Jerez et al. 2010). Studies also focus
on Zn and Cu which are essential for the development and
functioning of physiological processes and are two of the most
abundant elements in organisms (Ley-Quinonez et al. 2013;
da Silva et al. 2014; Ley-Quinonez et al. 2017); however, at
high concentrations, both have toxic effects (ATSDR 2004,
2005). Such pollutants are transferred along the food chain
resulting in bioconcentration and bioaccumulation,
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representing a health risk to higher-level organisms such as
endangered sea turtles (Godley et al. 1999a, b; Storelli and
Marcotrigiano 2000; Aguirre et al. 2006; Frías-Espericueta
et al. 2006; Gardner et al. 2006; Cortés-Gómez et al. 2017;
Ley-Quinonez et al. 2017).

The Gulf of California ecoregion is home to five species of
sea turtles including the leatherback (Dermochelys coriacea),
green (Chelonia mydas), loggerhead (Caretta caretta),
hawksbill (Eretmochelys imbricata), and olive ridley
(Lepidochelys olivacea) turtles (Briséño 2006; Zavala-
Norzagaray et al. 2007a) (Lemus and López 2002; Zavala-
Norzagaray et al. 2007b). Of these species, olive ridleys are
the most abundant, using extensive foraging areas and nesting
beaches within the state (Briséño 2006; Zavala-Norzagaray
et al. 2017), like Ceuta beach, located in the state of Sinaloa,
Mexico, which is catalogued as a sea turtle sanctuary and
priority beach for L. olivacea turtle nesting, with a mean of
621 nests laid annually over an extension of 35 km of beach
(CONANP 2009; Sosa-Cornejo et al. 2016).

Olive ridley turtles are classified as endangered
(SEMARNAT 2010) inMexico; whereas internationally, they
are listed as vulnerable (IUCN 2014); however, in coastal
areas of the Gulf of California, the illegal consumption of
sea turtle meat and eggs is extensive to date (Mancini and
Koch 2009; Senko et al. 2009; Mancini et al. 2011).

On the other hand, previous studies in Sinaloa have docu-
mented metal accumulation in both olive ridleys, stranded

dead on Ceuta nesting beach (Frías-Espericueta et al. 2006)
and captured live, in foraging areas (Zavala-Norzagaray et al.
2014). However, further studies are needed to provide infor-
mation on the possible bioaccumulation of trace metals in
nesting females and the risk associated with the transfer of
these contaminants to their offspring (Páez-Osuna et al.
2010a, b, 2011).

The objective of this study was to determine the concentra-
tion of trace metals in the blood of a post-nesting olive ridley
turtle population on Ceuta beach, Sinaloa, Mexico.

Materials and methods

Between August and September 2018, 35 blood samples were
taken from post-nesting olive ridley turtles nesting at Ceuta
beach, Sinaloa,Mexico (length: 35 km, 23° 58' 54" N 107° 03'
00" W and 23° 43' 00" N 106° 50' 00" W) (Fig. 1). A total of
5 ml of blood was collected from the dorsal cervical sinus of
each turtle using a 21 gauge needle and 10-ml syringe and
then transferred into a tube with EDTA as anticoagulant
(Owens 1999; Ley-Quinonez et al. 2017). Samples were
stored in refrigeration at 4 °C until laboratory processing.
Curved carapace length (CCL) and width (CCW) were mea-
sured for each turtle after nesting was concluded and were
used to determine age (Gardner et al. 2006; Páez-Osuna
et al. 2010a, b; Cortés-Gómez et al. 2014). Individual turtles

Fig. 1 Ceuta Beach, Sinaloa,
Mexico. Nesting area of sea turtle
Lepidochelys olivacea
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were subjected to a detailed physical examination to docu-
ment any skin damage, tumors, flipper amputations, physical
anomalies, emaciation, weakness, and epibiotic load (Deem
et al. 2009; Espinoza-Romo et al. 2018). Once this procedure
was completed, the turtles were released unharmed to contin-
ue their return crawl to the sea.

In the laboratory, 0.5 g of blood (wet weight) was proc-
essed using an acid mixture of 5 mL of HNO3, HCI, and H2O2

(proportion 2:2:1) in a microwave system (MARS Xpress,
CEM) during 35 min (Ley-Quinonez et al. 2011, 2013,
2017; Zavala-Norzagaray et al. 2014). During the digestion
process, two replicates of the reference material (RM) TORT-
3 (National Research Council of Canada, Ottawa) were used
to identify the evaporation and recovery percentage, and two
blood samples were added with a standard multielement
SIGMA 6000 (PerkinElmer) (0.06 μL) to identify equipment
efficiency and possible interference generated by the analysis
tissue. Four targets were placed (deionized water), to identify
possible contamination and ensure analysis accuracy.

Trace metal concentrations (based on wet weight) were
determined with an optical emission inductively coupled plas-
ma atomic spectrophotometer (ICP-AES) model OPTIMA
4300TM DV (PerkinElmer). Calibration curves were made
for the spectrophotometer using a multielement standard
SIGMA 6000 (PerkinElmer). Limits of detection (LOD) were
established using the wavelength (mm) recommended by the
distributor (0.01 μg g-1 for Cd, As, and Hg, for Ni and Pb, and
0.04μg g-1 for Zn, Cu,Mn, and Se). Recovery of RM (TORT-
3) and standard repetitions added were between 84 and 98%.

Mean, range ± standard deviation (SD), and minimum and
maximum concentrations (min-max) in micrograms per gram
(μg g-1) were calculated. Kolmogorov-Smirnov test was used
as a normality test. The Pearson’s correlation coefficient test
was used to establish relationships among metal concentra-
tions or metals vs turtle morphometry; and p values < 0.05
were considered statistically significant. Statistical analyses
were performed using Minitab® 17.1.0 (Minitab Inc., State
College, PA, USA).

Results and discussion

During this study, all turtles were healthy with no injuries or
deformities and zero to low epibiotic load. Turtles had a mean
CCL of 65.52 cm (61.0–71.0 cm ± 2.29) and CCW of
70.08 cm (63.0–74.0 cm ± 3.10).

Essential trace elements (Zn and Cu) were found in higher
concentrations (9.43 μg g-1 ± 6.56 and 2.11 μg g-1 ± 0.94,
respectively) than toxic metals (Cd 0.61 μg g-1 ± 0.51 and Pb
0.099 μg g-1 ± 0.063) (Table 1). The concentration of metals
in blood of post-nesting sea turtles decreased in the following
order Zn > Cu > Cd > Pb. As and Hg concentrations were
below of limit detection (BLD). No relationships among

metals or metals concentration vs turtle size were observed
(p > 0.05) (Table 2).

Cu concentration was relatively high compared to other
studies (Table 3), yet overall, there is little variation in levels
between sea turtle species (Páez-Osuna et al. 2010a; van de
Merwe et al. 2010; Camacho et al. 2013; Ley-Quinonez et al.
2013; Trocini 2013; Zavala-Norzagaray et al. 2014; Ley-
Quinonez et al. 2017), except for leatherback turtles that have
high levels of Cu perhaps related to their diet which is primar-
ily based on gelatinous zooplankton (Guirlet et al. 2008; Xu
et al. 2011; Ley-Quinonez et al. 2013). In general, Cu concen-
trations in blood are low for all sea turtle species, with all
available studied reporting concentrations below 6.0 μg g-1

(Kenyon et al. 2001; Guirlet et al. 2008; Páez-Osuna et al.
2010a; van de Merwe et al. 2010; Ley-Quinonez et al. 2011;
Ley-Quinonez et al. 2013; Zavala-Norzagaray et al. 2014).
According to Ley-Quinonez et al. (2013) and Zavala-
Norzagaray et al. (2014), these concentrations observed in
post-nesting females at Ceuta beach can be considered “nor-
mal values” in sea turtle.

Zn is an essential element for normal growth and physio-
logical processes within organisms and is therefore present in
higher concentrations than other metals (Ruelas-Inzunza et al.
2005; Cornish et al. 2007; Elorriaga-Verplancken and
Aurioles-Gamboa 2008; Griesel et al. 2008; Sinaei and

Table 1 Concentration of trace metals (μg g-1) wet weight) in blood of
nesting olive ridley turtles (Lepidochelys olivacea) collected in Ceuta
beach, Sinaloa, Mexico, 2019

Variable Mean ± SD Min–max

Zn 9.430 ± 6.560 1.50–26.73

Cu 2.118 ± 0.945 0.56–3.83

Pb 0.099 ± 0.069 (10) 0.00–0.19

Cd 0.619 ± 0.518 (1) 0.03–1.70

As LOD -

Hg LOD -

LOD limit of detection

The data are presented as mean ± SD or range in parentheses. na, number
of samples above the LOD in parenthesis if ≤ 16

Table 2 Pearson’ correlations among trace metals in blood of the olive
ridley turtle (Lepidochelys olivacea)

Zn Cu Pb Cd LCc (cm)

Cu 0.204

Pb −0.228 −0.212
Cd 0.206 0.023 0.981 −0.107
Acc (cm) 0.240 0.211 0.250 −0.124 0.731

Significant correlation at level 0.05
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Bolouki 2017). Zn concentrations obtained in this study are
similar to those observed previously in nesting olive ridley
turtles in the southern Mexican Pacific (10.43 μg g-1)
(Cortés-Gómez et al. 2014) and higher than levels found in
others sea turtles species sampled on foraging grounds
(Kenyon et al. 2001; van de Merwe et al. 2010; Camacho
et al. 2013). However, this may be due to the geographical
location and characteristics of the foraging area and appear not
to represent a health risk to sea turtles (van de Merwe et al.
2009a; Páez-Osuna et al. 2010a; Zavala-Norzagaray et al.
2014).

Recently, an increasing trend in Cd, Pb, and Zn metal con-
centrations has been reported in the coastal areas of the
Mexican Pacific, notably in the states of Sinaloa and Nayarit
which may present a risk of toxic effects on the region’s eco-
system health (Páez-Osuna 2014; Vazquez Botello et al.
2014). With regard to Gulf of California’s food webs,
biomagnification in organisms of Cd and Zn has been ob-
served, while Cu shows a partial biomagnification (Jara
Marini et al. 2014; Páez-Osuna 2014). However, Pb has been
shown to biodilute through trophic levels (Szefer et al. 2006;
Soto-Jiménez et al. 2008; Ruelas-Inzunza et al. 2010; Jara
Marini et al. 2014). According to Soto-Jiménez et al. (2008),
Pb concentrations in the Gulf of California were primarily
linked to drilling activities for the production of gasoline in
Mexico and the USA back in the 1980s. However, the current
use of fuels low in Pb has resulted in a decrease of this metal in
the ocean and its tropic chains (Páez-Osuna 2014).

Compared to other metals, low Pb concentrations have also
been observed in sea turtle blood (Ley-Quinonez et al. 2011,

2013; Zavala-Norzagaray et al. 2014) and tissues (Gardner
et al. 2006) in the Gulf of California. However, Pb levels
found in this study (0.099 ± 0.063 μg g-1) were higher than
those reported by Cortés-Gómez et al. (2014) yet lower than
concentrations reported by Páez-Osuna et al. (2010b)
(Table 3); both of these studies were conducted on nesting
olive ridley turtles in the Mexican Pacific. Páez-Osuna et al.
(2010b) concluded that the Pb concentrations in sea turtles
from Oaxaca (0.19 ± 0.03 μg g-1) are a reflection of the low
Pb concentrations in the area, and such levels do not represent
a health risk for the nesting population of olive ridley turtles in
this region.

Cd is the metal that poses the greatest environmental health
hazard to both humans and animals due to its toxicity. For that
reason, it is of great interest in ecotoxicology (Storelli and
Marcotrigiano 2003; Storelli et al. 2008), particularly in wild-
life (Camacho et al. 2013; Cortés-Gómez et al. 2018) as the
main source of exposure to Cd is through trophic chains (van
de Merwe et al. 2009b; Ley-Quinonez et al. 2017; Ross et al.
2017).We found higher Cd concentrations than those reported
in sea turtle blood from other regions (Kenyon et al. 2001;
Guirlet et al. 2008; Páez-Osuna et al. 2010b; van de Merwe
et al. 2010; Labrada-Martagón et al. 2011; Camacho et al.
2013; Trocini 2013; Cortés-Gómez et al. 2014; Sinaei and
Bolouki 2017). Also, Cd was at lower levels than those pre-
viously reported in the same species and region but on forag-
ing grounds (Zavala-Norzagaray et al. 2014). Cd levels were
also lower than concentrations found in other sea turtle species
from the same region (Ley-Quinonez et al. 2013; Ley-
Quinonez et al. 2017) (Table 3). According to Storelli and

Table 3 Trace metals concentrations in sea turtle blood compared to levels found in the present study of nesting olive ridley turtles (Lepidochelys
olivacea) at Ceuta beach, Sinaloa, Mexico, 2019

Species Zn Cu Cd Pb Author

L. olivacea Mexico 9.43 ± 6.56 2.11 ± 0.94 0.61 ± 0.51(1) 0.099 ± 0.06 (10) This study

L. olivacea Mexico 37.12 ± 3.67 1.02 ± 1.47 1.33 ± 0.20 BLD Zavala-Norzagaray et al. (2014)

L. olivacea Mexico 10.43 ± 4.12 0.60 ± 0.11 0.17 ± 0.10 0.02 ± 0.01 Cortés-Gómez et al. (2014)

L. olivacea Mexico 58.4 ± 4.7 2.28 ± 0.40 0.45 ± 0.20 0.19 ± 0.03 Páez-Osuna et al. (2010a, 2010b)

C. mydas Mexico 63.58 ± 17.06 1.71 ± 0.73 0.99 ± 0.35 BLD Ley-Quinonez et al. (2013)

C. mydas Mexico 13.92 ± 0.49 NA 0.06 ± 0.00 NA Labrada-Martagón et al. (2011)

C. mydas Iran 36.78 ± 3.20 2.01 ± 0.23 0.37 ± 0.02 0.77 ± 0.20 Sinaei and Bolouki (2017)

C. mydas Australia 7.54 ± 063 0.97 ± 0.09 0.33 ± 0.009 NA van de Merwe et al. (2010)

C. caretta Mexico 44.81 ± 17.53 2.83 ± 0.62 1.80 ± 0.63 BLD Ley-Quinonez et al. (2011)

C. caretta Spain 4.97 ± 2.9 1.27 ± 8.46 0.29 ± 0.25 0.06 ± 0.02 Camacho et al. (2013)

C. caretta Australia 11.54 ± 1.77 0.67 ± 0.13 0.30 ± 0.30 0.02 ± 0.01 Trocini (2013)

D. coriacea French Guiana 44.4 ± 1.12 5.36 ± 1.12 0.32 ± 0.12 NA Guirlet et al. (2008)

L. kempii Mexico 7.50 0.52 NA 0.01 Kenyon et al. (2001)

Concentration in μg g-1 ; NA not analyzed, BLD below of limit detection

The data are presented as mean ± SD or range in parentheses. na, number of samples above the BLD in parenthesis if ≤ 16
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Marcotrigiano (2003), Cd accumulates in higher concentra-
tions in carnivorous organisms, particularly those that feed
on calcareous species such as crabs and mollusks (Storelli
et al. 1998a; Ley-Quinonez et al. 2011). Other studies indicate
that organisms that feed in semi-enclosed ecosystems tend to
be more exposed to metal bioaccumulation processes (Sakai
et al. 2000b; Storelli et al. 2008; Ley-Quinonez et al. 2013).
The Gulf of California is an example of this, with previous
studies showing Cd biomagnification through the regions tro-
phic webs, with organisms at higher levels presenting greater
concentrations of this metal (Jara Marini et al. 2014). This
trend for high Cd concentrations has been documented in all
sea turtle species found in the Gulf of California (Frías-
Espericueta et al. 2006; Gardner et al. 2006; Kampalath
et al. 2006; Ley-Quinonez et al. 2011; Zavala-Norzagaray
et al. 2014). Also, these levels are the highest found in sea
turtles globally; this is particularly evident in loggerhead tur-
tles, a carnivorous species. Storelli et al. (2005) mentioned
that Cd concentrations in sea turtles are a reflection of the
contaminant load in foraging areas; however, Cd bioavailabil-
ity in marine organisms is mainly due to global factors and
does not necessarily reflect areas with high anthropogenic
activity but also oceanic natural contributions. Organisms in
the Pacific Ocean present a higher Cd concentrations than
those in the Atlantic Ocean (Fraga et al. 2018). Cd concentra-
tions in nesting populations of olive ridley turtles may repre-
sent a risk for turtle hatchlings after maternal transfer (Páez-
Osuna et al. 2010a).

Hg and As are considered among the most important toxic
elements in the environment (Yokel et al. 2006; Páez-Osuna
2014); however, in our study, As and Hg concentrations in
blood were BLD. As concentrations in sea turtles show vari-
ation by species and food source (Storelli et al. 1998a; Storelli
and Marcotrigiano 2000; Zavala-Norzagaray et al. 2014;
Cortés-Gómez et al. 2017; Ley-Quinonez et al. 2017).
Different studies have reported As levels on olive ridleys,
representing low concentrations in blood and other tissues
(1.19 to 3.34 μg g-1) compared to other sea turtle species
(Cortés-Gómez et al. 2014, 2017; Zavala-Norzagaray et al.
2014). According to Saeki et al. (2000), sea turtles that feed
on algae and mollusks accumulate high levels of As, while
omnivorous species, like olive ridleys (Márquez 1990; Páez-
Osuna et al. 2010b), tend to accumulate lower levels of this
metalloid (Agusa et al. 2008).

On the other hand, Hg concentrations in different sea turtles
tissues tend to be < 0.5 μg g-1 (Storelli et al. 1998b; Sakai et al.
2000a; Anan et al. 2002; Maffuci et al. 2005; Kampalath et al.
2006; Innis et al. 2008; Day et al. 2010; Jerez et al. 2010; van
deMerwe et al. 2010; Cortés-Gómez et al. 2017). Hg levels in
sea turtle from the Gulf of California present concentrations
BLD (Ley-Quinonez et al. 2011, 2013; Zavala-Norzagaray
et al. 2014); however, even in low concentrations, this metal
causes subtle negative impacts on sea turtle immune function

depending on the type of Hg speciation like methylmercury
(Day et al. 2007).

In sea turtles, the curved carapace length (CCL) is used to
determine age (Gardner et al. 2006; Páez-Osuna et al. 2010a,
2010b; Cortés-Gómez et al. 2014), and according to Hart et al.
(2014), the CCL observed in the turtles studied (65.52 cm) are
similar to the nesting olive ridley turtles in theMexican Pacific
(64 cm). Statistically, there was no significant correlation
found between CCL vs metal concentrations (p > 0.05), pos-
sibly because there was little difference between the sizes of
the studied organisms, since they were all adult female nesting
turtles. However, these results are consistent with the previous
studies in the same species in the Mexican Pacific (Frías-
Espericueta et al. 2006; Páez-Osuna et al. 2010a, 2010b;
Zavala-Norzagaray et al. 2014) and other sea turtles
(Gardner et al. 2006; Ley-Quinonez et al. 2011; Ley-
Quinonez et al. 2013, 2017). On the other hand, metal con-
centrations in blood of sea turtles in the Atlantic Ocean dem-
onstrate positive correlation to size, particularly Pb (Kenyon
et al. 2001; Wang 2005; Fussy et al. 2007; Camacho et al.
2012, 2013). This relationship may be due to oil drilling and
extraction activity, being one of the main sources of contam-
ination in the area. Oil contamination increases levels of toxic
metals such as Ni, Cd, and Pb (Vazquez et al. 2002; Turner
and Rabalais 2019) with potential risks for marine biota
(Villanueva and Botello 1992; Botello et al. 2005; Ruiz-
Fernández et al. 2019).

Conclusions

Blood has been successfully used to study trace metals found
in sea turtles and, unlike other tissues, provides information on
recent exposure to these environmental contaminants (Day
et al. 2005; Ley-Quinonez et al. 2013, 2017; Bucchia et al.
2015). Metal concentration in blood is also correlated to that
in other tissues, which further promotes its use in bioaccumu-
lation studies (van de Merwe et al. 2010).

Our study suggests that toxic metals, including As and Pb,
do not represent a risk to the health of post-nesting olive ridley
turtles sampled at Ceuta beach as levels of these metals were
low and were of similar concentrations to those found in other
sea turtle species in the Gulf of California. Hg concentration
was below LOD which corroborates the previous studies
which found this element at low levels in sea turtles from
the Mexican Pacific. However, it is important to consider that
metal speciation occurs in Hg and this plays an important role
in metal toxicity, particularly methylmercury, which even at
low levels, can be harmful to organisms. Therefore, future
research should consider the study on Hg speciation. In con-
trast, Cd levels were relatively high when compared to other
species and populations of sea turtles worldwide and Cd may
represent the greatest risk for sea turtles in the Mexican
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Pacific. Such concentrations of Cd may pose a further risk to
sea turtles through bioaccumulation from the nesting female to
offspring which may affect embryo development.
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